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Abstract

Background: The roe deer, Capreolus sp., is one of the most widespread meso-mammals of Palearctic distribution,
and includes two species, the European roe deer, C. capreolus inhabiting mainly Europe, and the Siberian roe deer,
C. pygargus, distributed throughout continental Asia. Although there are a number of genetic studies concerning
European roe deer, the Siberian roe deer has been studied less, and none of these studies use microsatellite
markers. Natural processes have led to genetic structuring in wild populations. To understand how these factors
have affected genetic structure and connectivity of Siberian roe deer, we investigated variability at 12 microsatellite
loci for Siberian roe deer from ten localities in Asia.

Results: Moderate levels of genetic diversity (He = 0.522 to 0.628) were found in all populations except in Jeju
Island, South Korea, where the diversity was lowest (He = 0.386). Western populations showed relatively low genetic
diversity and higher degrees of genetic differentiation compared with eastern populations (mean Ar = 3.54 (east),
2.81 (west), mean Fst = 0.122). Bayesian-based clustering analysis revealed the existence of three genetically distinct
groups (clusters) for Siberian roe deer, which comprise of the Southeastern group (Mainland Korea, Russian Far East,
Trans-Baikal region and Northern part of Mongolia), Northwestern group (Western Siberia and Ural in Russia) and
Jeju Island population. Genetic analyses including AMOVA (Fgr = 0.200), Barrier and PCA also supported genetic
differentiation among regions separated primarily by major mountain ridges, suggesting that mountains played a
role in the genetic differentiation of Siberian roe deer. On the other hand, genetic evidence also suggests an
ongoing migration that may facilitate genetic admixture at the border areas between two groups.

Conclusions: Our results reveal an apparent pattern of genetic differentiation among populations inhabiting Asia,
showing moderate levels of genetic diversity with an east-west gradient. The results suggest at least three distinct
management units of roe deer in continental Asia, although genetic admixture is evident in some border areas. The
insights obtained from this study shed light on management of Siberian roe deer in Asia and may be applied in
conservation of local populations of Siberian roe deer.
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Background

The family Cervidae is widely distributed throughout
Eurasia and includes 40 species of deer [1]. The roe deer
(Capreolus Gray, 1821) is one of the most widespread
meso-mammals in Cervidae and includes two species,
the smaller European roe deer (C. capreolus Linnaeus,
1758) and the larger Siberian roe deer (C. pygargus
Pallas, 1771). The two species of deer are distinguished
mainly by differences in morphology and karyotype. The
Siberian roe deer is distributed in the Palaearctic
throughout continental Asia [2] and some parts of East-
ern Europe [3]. Although the classification of subspecies
is still controversial, it is widely accepted that the Siberian
roe deer comprises of at least three subspecies, C.
pygargus pygargus (from Volga river to Lake Baikal
and Northeastern Russia), C. pygargus tianschanicus
(or C. c. bedfordi Thomas, 1908) (Tianshan mountain,
Mongolia, Russian Far East and Korea) and C. pygargus
melanotis Miller, 1911 (Eastern Tibet, and Gansu and
Sichuan Province, China).

For mammal species such as Siberian roe deer, which
is distributed across extensive geographical range, con-
temporary level of genetic variation and population
structure may be shaped by interaction of both natural
and anthropogenic factors [4, 5]. Especially numerous
human activities, such as habitat destruction/fragmenta-
tion, hunting, and human-mediated translocation, have
influenced distribution, population structure, and genetic
diversity of natural wildlife during the last few centuries
[6-8]. Fossil records report that Siberian roe deer terri-
tory was once connected to the northern Caucasus [9].
However, population size drastically diminished sup-
posedly because of overhunting in Western Siberia and
Northeastern Siberia during the 19th and 20th centuries
[10]. Regardless, the original historic distribution has al-
most completely recovered.

Population genetics and phylogeography of European
roe deer have been well studied [11-19]. Most studies
using mitochondrial and nuclear markers for European
roe deer revealed geographic pattern in the population
structure, with generally high levels of genetic variation.
The Siberian roe deer is relatively less studied and most
of the genetic studies of the species have been obtained
from phylogenetic inferences using mitochondrial DNA
sequence data. These studies using mtDNA demon-
strated that Siberian roe deer can be divided into several
major clusters with geographic patterns; the cluster in
eastern Siberia and the western Siberia [20, 21]. In con-
trast, some phylogeographic studies have reported no
apparent geographic pattern of genetic variation among
the broadly sampled Siberian roe deer [19, 22].

Overall, population boundaries and the genetic struc-
turing of the Siberian roe deer remain unclear and the
classification of C. pygargus subspecies is still under
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debate. Although phylogenetic studies using mtDNA se-
quences provided valuable information regarding the
genetic relationship and phylogeographic inferences of
the Siberian roe deer, studies on population genetics
using the fast-evolving nuclear makers, such as microsa-
tellites, can provide additional information to better
understand the present status of genetic diversity and
population structure of geographic Siberian roe deer in
Asia.

In this study, we investigated microsatellite variability
for Siberian roe deer collected throughout Asia to exam-
ine the level of population genetic structure and the
amount of genetic variation of Siberian roe deer. These
data were applied to discuss how historical and demo-
graphic dynamics have affected the recent and past
population genetic structure of Siberian roe deer.

Results

Genetic variability of Siberian roe deer

Genetic characteristics of 12 microsatellite loci from
Siberian roe deer sampled at each location are shown in
Additional file 1: Table S1. Source information and char-
acteristics of 12 microsatellite loci from other species are
shown in Additional file 1: Table S2. A total of 122 alleles
were detected for 189 individuals of ten Siberian roe deer
populations (Fig. 1); Jeju, South Korea (SKJ), Mainland
South Korea (SKM), Primorsky Krai, Russia (RPR),
Yakutia, Russia (RYA), surroundings of Sokhondinsky
Zapovednik (nature reservation), Russia (RSO), Northern
part of Mongolia (MGN), Altaisky Krai, Russia (RAL),
Novosibirskaya Oblast, Russia (RNO), Sverdlovskaya
oblast, Ural, Russia (RUL) and Kurganskaya Oblast,
Russia (RKU).

The number of alleles per locus varied from 2 (BM25)
to 24 (MB757) with a mean of 10.17. Microsatellite loci
showed various levels of polymorphism, with the poly-
morphism information content (PIC) values ranging
from 0.062 (IDVGA29) to 0.926 (BM757). Most loci, ex-
cept IDVGA29, showed moderate to high polymorph-
ism. Private alleles were observed in most populations
except Mid-west Siberia (RAL and RNO), but all private
alleles were in very low frequency ranging from 0.011 to
0.106 (Table 1). Null alleles were present at more than
one locus for each population except Mid-west Siberia
(RAL and RNO), but there was no evidence of a large al-
lele drop out (Table 1). Occurrence of null alleles at each
locus showed generally low frequency less than 0.10 for
most of populations. However, some loci showed various
range of null alleles for certain populations as follows;
0.10 for the locus RT30 (SKM), IDVGA29 (SKJ) and
BM757 (RYA), 0.30 for locus CSSM41 (SKJ, RPR and
RUL), MB25 (SKM, RPR and MGN), Roe09 (SKM, RYA,
and RUL), RT1 (SKM, RPR and RSO) and RT20 (SK],
RPR and RYA). The highest frequency of null allele
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Fig. 1 Sampling location and subspecies range of Siberian roe deer, C. pygargus. Pie charts of membership proportions of each sampled
population inferred by structure analysis (K= 3). 1: Main Mountain ranges [2], 2: Cp.pygargus, 3: Cp.tianschanicus. SKJ: South Korea, Jeju (N = 33),
SKM: South Korea Mainland (N = 31), RPR: Russia, Primorsky Krai (N =30), RYA: Russia, Yakutia (N = 18), RSO: Russia, Sokhondinsky (N =9), MGN:
Mongolia, Northern part (N =12), RAL: Russia, Altay (N = 5), RNO: Russia, Novosibirsk (N =7), RUR: Russia, Ural (N = 23), RKU: Russia, Kurgan (N = 21).
Base image is created by Uwe Dedering and licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license (CC BY-SA). Fig. 1
is reproduced in this study under the license. https://commons.wikimedia.org/wiki/File:Asia_laea_relief_location_map.jpg

occurrence was found in the locus IDVGAS, with the
null allele frequency of 0.60 for SKM, RPR, RSO, MGN,
RKU, and RYA.

Measures of genetic diversity were generally high in
Primorsky Krai, Russia (RPR) (mean no. of alleles per
locus (MNA) =7.42, Allelic richness (Ar)=3.67, ex-
pected heterozygosity (Hg)=0.623) followed by Main-
land Korea (SKM) and Northern Mongolia (MGN)
(Table 1). The lowest genetic diversity was found in Jeju
island, Korea (SKJ) (MNA =3.75, Ar=2.18, Hg = 0.386),
followed by Mid-west Siberia (RAL and RNO) and West
Siberia (RUL and RKU). Wilcoxon Signed Rank test re-
vealed that allelic richness and expected heterozygosity
were significantly higher in the East populations than in
the West populations for the most population pairs (one
tailed p < 0.05) (Additional file 1: Table S3, Figure S1).

All populations showed significant deviation of ob-
served heterozygosity from heterozygosity expected
under Hardy-Weinberg equilibrium in the direction of
heterozygote deficiency except Novosibirsk, Russia
(RNO) (Table 1). Inbreeding coefficient (Fis) estimates
across all populations ranged from 0.031 to 0.247, and

five populations (SKJ, SKM, RPR, RYA and RSO) were
significantly deviated from zero (Table 1). Significant
deviation in Hardy-Weinberg equilibrium (HWE) and
Fis could be due to the possibility of Whalund effect,
inbreeding (due to non-random mating or subpopula-
tions), and/or other anomaly such as the presence of
null alleles.

Genetic relationship and gene flow

ENA-corrected (excluding null alleles) and uncorrected
pairwise Fst are shown in Table 2, where these two esti-
mates did not show significant differences (Wilcoxon
Rank Sum Test; U =987, P=0.8401). Therefore, we used
uncorrected pairwise Fst for further analyses and inter-
pretation of genetic differentiation of Siberian roe deer
population. Pairwise Fst values for 24 out of 44 popula-
tion pairs are significantly different from 0 after correc-
tions for multiple comparisons (P < 0.001) (Table 2). The
lowest value of genetic differentiation was detected in
SKM vs. MGN (Fst =0.025) and roe deer from Jeju Is-
land, South Korea (SKJ), showed the highest degree of
genetic differentiation to all others (mean pairwise Fst =
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Table 1 Genetic characteristics of Siberian roe deer in each region/location across 12 microsatellite loci

Region N MNA Ar He Ho Fs® HWE P ° Number of loci with null allele NPA (Freg. rang)
East SKJ 33 375 218 038 0329  0.150* 0000 3) 3 (RT20, CSSM41, IDVGA29) 4 (0.016-0.106)
A
SKM 31 658 348 0596 0451  0247% 0000 (7) 5 (RT1, RT30, Roe09, MB25, IDVGAS) 3 (0.016-0.065)
RPR 30 742 367 0623 0490  0217* 0000 (7) 5 (RT1, RT20, MB25, CSSM41, IDVGA8) 4 (0.017-0.050)
RSMG 21 700 567 0598 0500  0.169* 0000 4) 4 (RT1, MB25, BM757, IDVGAS) 7 (0.024-0.025)
RSO 9 500 336 0550 0438 0215 0000 (2) 2 (RT1, IDVGAS) 4 (0.056)
MGN 12 567 366 0628 0544 0138 0000(@4) 2 (MB25, IDVGAS) 3(0.042)
RYA 18 533 326 0553 0459  0.175* 0000 (4) 4 (RT20, Roe09, BM757, IDVGAS) 5 (0.031-0.094)
RARN 12 392 387 0560 0503 0107™° 00002 1 (DVGAS8) 0
RAL 5 292 281 0541 0471 0144™  0003@4) - -
RNO 7 333 291 0539 0524 0031™  0983(0) -° -
RURK 44 492 373 0534 0495 0075™° 0000 (7) 3 (Roe09, CSSM41, IDVGAS) 3(0.011-0012)
RKU 21 383 268 0530 0512 0034N  0000(6) 2 (Roe09, IDVGAS) 1(0.025)
il RUL 23 442 282 0522 0478  0085N° 0000 (5) 2 (Roe09, CSSM41) 2 (0.022-0.024)
West  Mean 27 556 368 0550 0461  0.163 0000 (5) - -

Number of individual per population (N), Allelic diversity (MNA, mean no. of alleles per locus), allelic richness (Ar), expected heterozygosity (Hg) at Hardy-Weinberg
equilibrium, observed heterozygosity (Ho), inbreeding coefficient (Fs), and the probability (P) of being in Hardy-Weinberg equilibrium, null alleles, number of

private alleles (NPA)

For Fis within samples based on 2400 randomizations using the FSTAT program. NS: Not significant after adjusted nominal level (5 %) = 0.004
PProbability values using the Fisher's method implemented in the GENEPOP program. Number in parentheses indicates the no. of loci showing a significant

departure (P <0.05) from Hardy-Weinberg equilibrium
“Not determined due to small sample size

0.349). When a comparison is made between two re-
gions (West vs. Central and East), roe deer in Urals and
Kurgan, Russia (RUL and RKU) showed relatively higher
degrees of genetic differentiation with Mainland Korea
(SKM), Primorsky Krai, Russia (RPR) and Central Siberia
(RSO and MGN) (mean pairwise Fst=0.122). The ef-
fective number of migrants per generation (N.m) ranged
from 0.4 (SKJ vs. RYA, RSO, RAL, RNO, RUL and RKU)
to 103 (RPR vs. MGN) (Table 2). Roe deer in Jeju Island,
Korea (SKJ) showed negligible levels of gene flow relative
to all others.

UPGMA trees based on Neis D, distances displayed
topologies with three clusters (Fig. 2). Relationship tree
displayed Mainland Korea, Eastern and Central Siberia
populations (SKM, RPR, RSO and MGN) clustered to-
gether with high bootstrap support (82 %). However, the
Jeju Island, South Korea (SKJ) population remains sepa-
rated by long branches, possibly due to a founder effect.
Principal coordinates analysis (PCA) for all populations
supported the result from the relationship tree, revealing
similar patterns among locations (Fig. 3a). PCA analysis
performed without island population (SKJ) showed three

Table 2 Pairwise Fst and gene flow (Nom in parentheses) estimates between geographic populations

SKJ SKM RPR RYA RSO MGN RAL RNO RUL RKU

Skl — 0277 (0.7) 0279 (0.7) 0366 (04)  0355(05)  0295(06) 0376 (04)  0372(04) 0393 (04) 0387 (04)
SKM  0286%(06) — 0011 (23.1)  0072(33) 0030(82) 0029(83) 0092 (25  0095(24) 0138(1.6) 0387 (20)
RPR  0290%(06) 0009"°(288) — 0046 (51) 0007 (365) 0011 (229) 0065 (36) 0081 (28)  0.115(19) 0095 (24)
RYA  0373*04) 0068*(34)  0.044*(54) — 0038 (64) 0056 (42) 0054 (44) 0045 (54) 0054 (44) 0055 (4.3)
RSO  0366*04) 0020™°(12.1) —0005™(inf)  0041"(58) — 0006 (424) 0070 (33) 0091 (2.5 0134 (1.6) 0099 (2.3)
MGN  0299%06) 0.025%100) 0002 ™(103) 0051™°(46) 0000(nf) — 0087 26) 0076 (30) 0127 (17) 0106 (2.1)
RAL  0386*(04) 0076™°(30) 0055™@43) 0045™(3) 0058"@4.1) 0076™°(30) — 0065 (36) 0107 (21)  0.116 (19)
RNO  0380%04) 0088%26)  0070*3.3) 0039%(62) 0091™25 0070*33) 005742 — 0042 (58) 0048 (50)
RUL  0412%04) 0143*(15)  0.115*(19) 0050%4.8)  0141*(15)  0128*(17) 0101™Q2) 003570 — 0033 (74)
RKU  0410%04) 0.124*(18) 0.101%2.2) 0058%4.1)  0111*Q20)  0.110%20)  0123"°(1.8) 0045™(53) 0032"°(76) —

Fst estimates (Weir & Cockerham 1984) are below the diagonal and Fsr using the ENA correction are above the diagonal
Probability of being different than zero after corrections for multiple comparisons (*P < 0.001, NS: not significant)
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clusters consisting of 1: Central and East (SKM, RPR, RSO
and MGN), 2: West and Mid-west (RUL, RKU and RNO)
and 3: Mid-west and Northeast (RAL and RYA) (Fig. 3b).

Genetic structure
Bayesian model based clustering analysis identified three
genetic clusters under the hierarchical island model sug-
gested by the Evanno et al. [23] (Fig. 4). Initially, the high-
est AK was observed when K was set to 2, dividing into
Jeju Island, South Korea (SKJ) and all other locations.
When Jeju Island, South Korea (SKJ), was excluded to de-
tect sub-structuring in remaining cluster, two additional
genetic clusters were observed, which clearly discriminated
the population in Central and Eastern Siberia (SKM, RPR,
RSO and MGN) from those in the Urals region and West
Siberia, Russia (RUL, RKU and RNO) populations. Moun-
tain Altay, Russia (RAL) and Yakutia, Russia (RYA) dis-
played intermediate genetic composition between the
Central/Eastern and Western population. Overall, struc-
ture analysis under the hierarchical island model revealed
three genetic clusters consisting of 1: Jeju Island, South
Korea (SKJ), 2: Central and East (SKM, RPR, RSO and
MGN; Southeastern group), and 3: West and Mid-west
(RUL, RKU and RNO; Northwestern group) with admixed
genetic compositions between the clusters 2 and 3 for
Mid-west (RAL) and Northeastern (RYA) population. A
pie chart represented for each sampling location on the
map, apart from roe deer from Jeju Island, South Korea
(SKJ), displayed two different genetic compositions with an
admixed population observed in border areas (Fig. 1).
Hierarchical analysis of molecular variance (AMOVA)
analysis based on the geographical distance showed sig-
nificant genetic differentiation (Frr =0.148) among re-
gions, which was much higher than among population
within regions (Fsr = 0.040) (Table 3A). Result based on
the three clusters after two admixed regions (RYA and
RAL) excluded presented greater difference in genetic
differentiation among regions (Frr =0.200) (Table 3B),
supporting the obvious genetic differentiation among
three clusters; Jeju Island, Korea (SKJ), Eastern region
(SKM, RPR, MGN and RSO) and Western region (RNO,
RUL and RKU). In addition, AMOVA analysis based on
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the two clusters after Jeju and two admixed regions
(RYA and RAL) excluded showed genetic differentiation
among regions (Frr=0.093) and among population
within regions (Fsg = 0.020) (Table 3C).

The Barrier analysis based on the pairwise Fst veri-
fied three areas of relatively sharp change in genetic
composition (Fig. 5). The first barrier separated the
Eastern region (SKM, RPR, MGN and RSO) from West
and Mid-west region (RAL, RNO, RUL and RKU) with
supported by six to eleven loci. The second barrier
separated Northeastern population (RYA) from all
other populations with supported by three to eleven
loci. The third barrier, supported by two to eleven loci,
separated Mid-west population (RAL) from Western
region (RNO, RUL and RKU).

Regression of the genetic isolation by geographic dis-
tance (IBD) over all samples showed significant correl-
ation in both with and without Jeju Island included
(Fig. 6). However, relationship between genetic and
geographic distances was increased as high as 3.5 fold
when Jeju Island, Korea (SKJ), was removed, indicating
that the distinct genetic differentiation of SKJ from
other populations greatly decreased the IBD relation-
ship. Also, IBD with marked pair of each population
based on the two clusters (structure) showed slightly
deviated point from standard linear which typically dis-
tributed on the low (pair of population within cluster)
and high (pair of population between clusters) genetic
distance (Fig. 6b).

To provide insights into the main causes of these
three regions (SKJ, Eastern region and Western region)
differentiation, statistical comparing pRst Fst and Rst
values (drift vs mutation) were performed. pRgr values
were very similar to Fst and permutation tests did not
detect Rst value significantly higher (p<0.05) than
pRst except one locus RT30 (Additional file 1: Table
S4). This suggests that differentiation is caused mainly
by drift. This result also ascertains the restricted level
of gene flow between populations separated by the high
mountain ridges and implies that Fst should be a better
estimator than Rgr of population differentiation for
Siberian roe deer.

1.00
0.80
0.60
0.40
0.20
0.00

RYA RSO MGN RALRNO RUR RKU

Fig. 4 Bar plots for population structure estimates of Siberian roe deer. Population symbol on the x-axis indicates the putative population of
sample origin. See Fig. 1 for location abbreviation. Each color denotes a cluster from STRUCTURE analysis

SKJ SKM RPR
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Table 3 Analysis of molecular variance (AMOVA) of the Siberian roe deer populations based on various geographic/genetic
groupings (four geographic regions, three genetic clusters, and two geographic regions)

A

Source of variation df SS Ms
Among regions 3 203.555 67.852
Among pop 6 50.962 8494
Among individuals 179 733.874 4.100
Within individuals 189 506.500 2680
Total 377 1494.892

B

Source of variation df SS MS
Among regions 2 192.296 96.148
Among pop 5 33.272 6.654
Among individuals 158 627.752 3973
Within individuals 166 447.000 2693
Total 331 1300.319

C

Source of variation df SS Ms
Among regions 1 53813 53813
Among pop 5 33.272 6.654
Among individuals 126 524919 4.166
Within individuals 133 382.500 2.876
Total 265 994.504

Est. Var. % F-Statistics Value P-Value
0615 15 Frr 0.148 0.001
0.142 3 Fsr 0.040 0.001
0.710 17 Fst 0.182 0.001
2680 65 Fis 0.209 0.001
4.147 100 Fir 0.354 0.001
Est. Var. % F-Statistics Value P-Value
0.853 20 Frr 0.200 0.001
0.077 2 Fsg 0.022 0.001
0.640 15 Fsr 0218 0.001
2693 63 Fis 0.192 0.001
4263 100 Fir 0.368 0.001
Est. Var. % F-Statistics Value P-Value
0.370 9 Frr 0.093 0.001
0.071 2 Fsr 0.020 0.001
0.645 16 Fst 0111 0.001
2.876 73 Fis 0.183 0.001
3962 100 Fir 0274 0.001

A: Four regions: Jeju Island (SKJ), East region (SKM, RPR), Central region (RYA, RSO, MGN) and West region (RAL, RNO, RUL, RKU). B: Three genetic clusters with two
admixed populations (RYA and RAL) excluded: Jeju Island (SKJ), Eastern region (SKM, RPR, RSO, MGN) and Western region (RNO, RUL, RKU). C: Two geographic
regions with SKJ and two admixed populations (RYA and RAL) excluded: Eastern region (SKM, RPR, RSO, MGN) and Western region (RNO, RUL, RKU)

df: degrees of freedom; SS: sum of squares; MS: mean squares; Est. Var.: estimated variance within and among populations

Three different measures of detecting population
genetic bottlenecks revealed no evidence of a histor-
ical or recent bottleneck for nine populations (SKM,
RPR, RYA, RSO, MGN, RAL, RNO, RUL and RKU)
(Table 4). However, the event of a recent population

bottleneck was detected in the Jeju Island, South Korea
(SKJ) (Wilcoxon sign-rank test, two-phase mutation
model (TPM)=0.005), implying significant excess of
heterozygosity relative to drift-mutation equilibrium. At
the same time the Garza & Williamson’s [24] M values

RAL

are proportional to the intensity of the barriers

Fig. 5 Areas of limited gene flow as estimated by BARRIER using Monmorier algorithm [70]. The genetic barriers are shown in bold lines, which

O

EAPA

WA




Lee et al. BMC Genetics (2015) 16:100

Page 8 of 15

a 0700
y = 0.083x - 0479 *
0.600 R2 = 0.108
P = 0.001 *
0.500 * o
k3
L 0.400 - *
- * 4
N
> 0300
[
[
0.200 -
0.100 *» :’ 8
VR IR
2 * o ¢®
0.000 o -- - o
5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000
Ln-Km
b
0.180
0160 | v=0.038x-0.217 | %
R?=0.376
0.140 P=0.001 . ‘f f f
t
+— 0.120 ¥
7]
Y- 0.100 -
=
~ 0.080 -
)
7]
W 0.060 -
0.040 -
0.020 -
0.000 r r T
5000 5500 6.000 6.500 7.000 7.500 8.000 8500 9.000
Ln-Km
Fig. 6 Regression of genetic distance on geographic distance between pairs of geographic Siberian roe deer populations. a: Analysis for all
populations, b: Analysis after excluding roe deer from Jeju Island. Each diagram and color present pairs of population based on the structure
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(0.765) and mode shift (none) tests did not show any
evidence of genetic bottleneck. Bottleneck analysis sug-
gested that all populations, except Jeju Island, South
Korea (SKJ), were in the range of a historically stable
population.

Discussion

In this study, we investigated the variability of microsat-
ellite loci to understand how different factors of genetic
diversification such as isolation by distance, isolation by
geographical barriers could affect the genetic diversity
and population structure of Siberian roe deer in North-
ern Asia. Our study is based on samples from extensive

geographic areas of Northern Asia, from Ural Mountains
to the Korean Peninsula and Jeju Island, covering most
of the species’ range to clarify the genetic relationships
among populations from different geographical loca-
tions. Autosomal nuclear markers of microsatellites were
employed to investigate the levels of genetic variation
and genetic structuring of Siberian roe deer populations.

Genetic diversity of Siberian roe deer

Relative comparison of genetic diversity estimates among
other roe deer species/populations would be informative
to understanding of the present genetic status of Siberian
roe deer. Although different sets of microsatellite loci were
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Table 4 Results of various tests to detect a recent population
bottleneck event within geographic populations

Population  Wilcoxon sign-rank tests®  Mode shift MP
TPM

SKJ 0.005 None 0.765 (0.040)
SKM 0.266 None 0.885 (0.009)
RPR 0.519 None 0.929 (0.018)
RYA 0.380 None 0.777 (0.058)
RSMG 0.733 None 0.831 (0.037)
RSO 0.831 None 0.793 (0.052)
MGN 0.850 None 0.753 (0.048)
RARN 0.320 None 0.810 (0.057)
RAL 0.365 Shifted mode  0.769 (0.103)
RNO 0206 Shifted mode  0.840 (0.055)
RURK 0.969 None 0.820 (0.058)
RUL 0677 None 0.787 (0.073)
RKU 0.151 None 0.826 (0.069)

?One-tail probability for observed heterozygosity excess relative to the

expected equilibrium heterozygosity (Heg), Which is computed from the observed
no. of alleles under drift-mutation equilibrium. TPM, two-phase model

PM value and its variance (in parentheses) of Garza and Williamson. M = the
mean ratio of the no. of alleles to the range of allele size

employed, apart from populations in Jeju Island, South
Korea (SKJ), most of Siberian roe deer populations re-
vealed moderate levels of genetic diversity (Hg =0.522 to
0.628), compared to those previously reported for Euro-
pean roe deer. Microsatellite diversity of European roe
deer ranged from 0.17 to 0.79 in several locations from
Italy, Britain and northern Germany (Hg=0.17 to 0.58
[11], Hg = 0.59 to 0.62 [18], and Hg = 0.74 to 0.79 [25], re-
spectively). However, because the different sets of micro-
satellites were employed in diversity estimates and this
may cause an inherent ascertainment bias that can vary
among primer pairs, especially in different species, it
should be interpreted with caution.

During the 20th century, many of the local Siberian
roe deer populations were significantly abated as a result
of human interference [26-30]. However, present data on
the genetic diversity of Siberian roe deer suggests that
the historical population reduction was transient, and its
effects on the genetic diversity of the populations were
insignificant. Result of bottleneck test also supported the
lack of evidence for bottleneck event, except in the Jeju
Island population (See below), indicating general stability
of Siberian roe deer populations in continental Asia.

Different measures of microsatellite variability are con-
sistently high in populations from East and Central Asia
compared to West Siberia (Table 1). One reasonable as-
sumption is that areas to the south and east of Siberia
have function as refugia for roe deer during glacial pe-
riods. Several vertebrate species were also reported to
have high levels of mitochondrial DNA variations in
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eastern Russia compared with those of surrounding
areas [31]. Combination of cold open steppes with for-
ested areas in south and east of Siberia may have re-
sulted in highly diverse faunas [32], which could provide
preservation and diversification of genetic lineages.
However, phylogeographic and archaeological inference
with additional samples from different geographical re-
gions, using various marker systems, such as mtDNA
and nuclear genes, should be implemented to precisely
determine the role of this region as refugia.

Roe deer from Jeju Island, South Korea (SKJ) showed
the lowest level of genetic diversity among Siberian roe
deer that were sampled in this study. This presumably is
due to the geographic isolation and historical population
fluctuations on Jeju Island. Roe deer inhabited in Jeju Is-
land during the last glacial maximum (LGM) when there
was a bridge between the island and the Korean penin-
sula. It is probable that a relatively small group of ani-
mals was founded in the island after the last glacial
periods, which led to reduced genetic diversity due to
processes such as founder effect and genetic drift. Hu-
man interference, such as excessive hunting and poach-
ing, could be another possible cause of the genetic
deprivation in Jeju population. The roe deer population
in Jeju gradually declined to near extinction in the early
1970s because of continuous hunting and poaching [33].
Since the 1980s, Jeju Special Self-Governing Province
and Jeju citizens has been active in conservation for roe
deer such as providing food during winter, removing
traps, and clamping down on poaching [34, 35]. Conse-
quently, the roe deer population in Jeju increased to
5,000 individuals in 1992 and climbed to 12,881 individ-
uals in 2009 [33]. The effect of recent fluctuations of roe
deer population in Jeju Island on its genetic diversity is
supported by the Bottleneck tests (Table 4). Therefore,
continuous monitoring of genetic diversity would be es-
sential for effective management and conservation of
Siberian roe deer in Jeju Island.

Genetic structure and gene flow

Present studies of genetic structure and differentiation
among Siberian roe deer populations clearly display the
existence of genetically distinct three clusters which com-
prise of the southeastern group (SKM, RPR, RSO and
MGN), northwestern group (RUL, RKU and RNO) and
Jeju Island population in Korea (SKJ). Such pattern of gen-
etic structure is well in accordance with distribution of the
two subspecies, C. p. pygargus and C. p. tianschanicus,
suggested by previous study [36]. Recently, mitochondrial
DNA sequence and nuclear IRBP (Interphotoreceptor ret-
inoid binding protein) data has been presented that Jeju
Island population to another subspecies, C. p. ochracea
[37]. The genetic makeups of the two populations (RYA
and RAL) are indicative of admixture of the two groups
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(southeastern and northwestern groups); however, a small
sample size limits ultimate defining of their genetic status.

A previous study [2] proposed three major factors that
may limit the geographical distribution of Siberian roe
deer. The first factor is geographical barriers consisting
of major mountain ridges (Altai, Sayans and Stanovoye)
and the Lake Baikal (Fig. 1), which also delineate geo-
graphical ranges of two subspecies (C. p. pygargus and
C. p. tianschanicus). The second factor is the depth of
snow and duration of the snowy period [2, 38, 39] and
last factor is the predominant vegetation type of the re-
gion, such as taiga, tundra, and desert [2]. These three
factors and their interaction presumably limited further
spread of roe deer, but probably first factor is the most
important for the formation of genetic groups or subspe-
cies. The other possible reason of it is that the mountain
ridges could serve as refugia during periods of climate
change (e. g. during the glacial maximums). In the pe-
riods of climatic optimums different genetic lineages
could spread from the mountains in different areas
resulting in formation of genetically different groups,
possibly subspecies. However, this assumption need to
additional phylogenetic studies will be required.

Barrier analysis that detected change genetic compos-
ition was also support limited gene flow in the major
mountain ridges (Fig. 5). Southeastern group (SKM,
RPR, RSO and MGN) and Northwestern group (RUL,
RKU and RNO) supported relatively high frequency and
fallowed by genetically admixed two populations (RYA
and RAL) in the border areas. Besides, results of the Iso-
lation by distance (IBD) (Fig. 6b) displayed that about
38 % of the genetic variation is explained by geograph-
ical distances between locations over the entire contin-
ent of Asia, which fits the hierarchical island model,
suggesting modern genetic structure resulted from nat-
ural processes [2, 10, 40, 41]. Additionally, different pat-
tern of distribution in the IBD scatter plot between and
within groups (southeastern and northwestern groups)
ascertains the effect of mountains ridges on the re-
stricted level of gene flow between groups. Thus, moun-
tain ridges of the southern Siberia have limited gene
flow between Southeastern (SKM, RPR, RSO and MGN)
and Northwestern (RUL, RKU and RNO) groups, lead-
ing to current genetic structure.

It should be noted that the Altay population (RAL) is
located in the border area of two subspecies and shows
the admixed pattern of two genetic clusters. This popu-
lation is genetically related to both groups (Southeastern
and Northwestern) and likely has historical and ongoing
gene flow with adjacent locations (Fig. 1). A previous
study of mitochondrial DNA [42] proposed that roe deer
in Altai Mountain might experience multiple population
replacements, stressing the role of the Altai Mountain as
a physical boundary separating C. p. pygargus and C. p.
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tianschaniscus. This speculation is based on the genetic
heterogeneity of Siberian roe deer in the Altai Moun-
tains, and relatively stable climatic conditions of the re-
gion compared to other Siberian regions during the
Pleistocene [42]. However, to resolve the question of
border area, additional population genetic studies with
more samples from areas at a finer geographic scale will
be required.

Roe deer population in Yakutia, Russia (RYA), were
established as a result of natural radiation from the
southern parts of geographical range and could originate
from both C. p. pygargus and C. p. tianschaniscus [43].
This assumption complies with the genetic structure of
the Yakutian population obtained in this study and is
also confirmed by the previous studies using morph-
ology and karyotype [44, 45].

Roe deer from Jeju Island, South Korea (SKJ) are gen-
etically divergent from all other Siberian roe deer, in-
cluding those on the Korean mainland. The Jeju Island
population was isolated from the mainland population
since LGM, and as a result, there has been no gene flow
between these two locations. Thus, the present genetic
feature of the Jeju Island population was derived as a
consequence of long-term geographical isolation and
adaptation to island environment. Cases where Jeju is-
land populations showing unique genetic and/or mor-
phological features was also described for other mammal
species such as wild boar (Sus scrofa), striped field
mouse (Apodemus agrarius chejuensis) and Siberian
weasel (Mustela sibirica) [46]. Future studies of this iso-
lated population would contribute to understanding the
effect of peripheral isolation on microevolution in
Cervidae.

Our results do not coincide with the recent phylogeo-
graphic findings [19] that demonstrated no apparent
geographical structuring for Siberian roe deer sampled
from vast geographic areas of Eurasia. Variability of
mtDNA control region suggested that the Siberian roe
deer in Asia has undergone genetic admixture and ap-
pears to show no apparent geographic barriers to gene
flow [19]. This difference could be due to the sensitivity
of molecular markers and disparate interpretation owing
to insufficient sample size and different modes of inher-
itance. The microsatellites are highly polymorphic and
autosomal nuclear markers with biparental inheritance,
and are more appropriate to delineate genetic structure
of recently diverged populations.

Management and conservation Implications

Overall, this study suggests that at least three distinct
management units may exist for the Siberian roe deer
populations in Asia [47]: Northwest genetic group (RUL,
RKU and RNO, partially corresponding to C. p. pygargus
subspecies), southeast genetic group (SKM, RPR, RSO
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and MGN, corresponding to C. p. tianschanicus) and
Jeju Island genetic group. Future planning of manage-
ment and/or conservation policies, including ex situ
population breeding, translocation and reintroduction
programs, need to consider the distinctiveness of the
three genetic groups in the Siberian roe deer species.
Strict application of management unit concept for the
two admixed populations (RYA and RAL) might be re-
laxed, or postponed until more detailed studies focusing
on these populations are performed.

The roe deer population in Jeju Island, Korea (SKJ)
needs special attention due to its low level of genetic di-
versity compared to those of continental populations.
The Jeju Island population seems to be thriving at the
present time, despite the low level of heterozygosity. The
current size of the Jeju roe deer population is estimated
to be around 12,881 [33] and considered to be over-
populated in the island. However, considering the de-
prived level of genetic diversity, it is probable that the
Jeju population might be vulnerable to epidemic diseases
or any change of environment in the future. Therefore,
it is recommended that both the genetic and physical
health statuses of the population are closely monitored.
Artificial translocation of roe deer individuals from the
mainland Korea to Jeju Island to increase genetic diver-
sity of Jeju population is not recommended because
these two populations are genetically highly differenti-
ated and should be regarded as separate management
units.

Herbivorous animals such as roe deer play an import-
ant role in the ecosystem, providing a prey for large car-
nivores. Therefore, proper genetic management of
Siberian roe deer populations and continuous monitor-
ing of its genetic status is critical for maintaining healthy
ecosystem. It is important to stress that systematic co-
operation between countries where Siberian roe deer in-
habit (Russia, Kazakhstan, Mongolia, China, North
Korea and South Korea) is imperative for effective main-
tenance of genetic diversity and gene flow of Siberian
roe deer. In particular, cooperative management of
border area is important not only for the roe deer itself
but also for a number of endangered large carnivore
species.

For example, Siberian roe deer is one of the main prey
animal of Amur leopard (Panthera pardus orientalis) in
the border area among Russia, China and North Korea
[48, 49]. Thus maintaining healthy roe deer population
in this transboundary region is crucial for the survival of
Amur leopard, which is one of the most severely endan-
gered subspecies of large Felidae species in the world
[49-53]. The status of the Siberian roe deer population
in North Korea remains unknown and the gene flow has
been discontinued along the Demilitarized Zone (DMZ)
of North and South Korean border for more than five
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decades. This situation would have negative impacts on
the long-term persistence of the Siberian roe deer in
Korean peninsula and the restoration efforts of Amur
leopard and tiger populations in this region. Siberian roe
deer also serve as an important prey species for other
carnivores like Amur tigers, gray wolves, lynxes, dholes,
bears, as well as foxes, martens, eagles and wild boars
[51, 54]. Thus, proper management of roe deer popula-
tions in northern Asian continent will also benefit many
other species, and eventually, the biodiversity of the en-
tire region.

Conclusion

In conclusion, the present study reveals that Siberian roe
deer inhabiting Asia is composed of genetically distinct
populations (Southeast, Northwest and Jeju Island,
Korea) and East—west gradient in genetic diversity. As a
whole, geographical barriers, as well as the genetic isola-
tion as a function of geographic distance ascertain re-
stricted level of gene flow among roe deer populations
over the whole continent of Asia. Two genetically
admixed populations, however, also reside in the border
areas between the two genetically distinct groups. Know-
ledge on the present status of genetic structure and gen-
etic diversity of Siberian roe deer has important
implications on the ecological and geographical impact
on genetic characteristics of Siberian roe deer. The in-
sights obtained from this study can be applied in man-
agement and conservation of local populations of
Siberian roe deer in Asia and raise the necessity of con-
tinuous monitoring of genetic status of such important
animals.

Methods

Sample collection and DNA extraction

A total of 189 individuals of C. pygargus were collected
from ten locations in Russia, Mongolia and South Korea
(Fig. 1). Jeju, South Korea (SKJ), Mainland South Korea
(SKM), Primorsky Krai, Russia (RPR), Yakutia, Russia
(RYA), surroundings of Sokhondinsky Zapovednik (nature
reservation), Russia (RSO), Northern part of Mongolia
(MGN), Altaisky Krai, Russia (RAL), Novosibirskaya
Oblast, Russia (RNO), Sverdlovskaya Oblast, Ural,
Russia (RUL) and Kurganskaya Oblast, Russia (RKU).
This experimental work was conducted with permis-
sion by the Conservation Genome Resource Bank for
Korean Wildlife (CGRB) that provided the roe deer sam-
ples for this study. All samples were legally collected and
deposited into CGRB. The procedures involving animal
samples followed the guidelines by Seoul National Univer-
sity Institutional Animal Care and Use Committee (SNU
TIACUC). Tissue (muscle, skin and liver) and blood sam-
ples were collected across the current distribution range
of C. pygargus from 2001 to 2011, and were frozen at
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-70 °C deep freezer in the CGRB or stored in ethanol
until DNA extraction. Genomic DNA was extracted
from individual sample using the DNeasy tissue and
blood kit (Qiagen, Valencia, CA) following the manufac-
turer’s protocol.

Microsatellite analysis

A total of 12 microsatellite loci were used and tested for
genotyping and genetic analysis of C. pygargus sampled.
Microsatellite markers previously developed from rein deer
(RT1, RT20, RT23, RT24, RT30), cattle (MB25, BM757,
CSSM41, IDNGAS, IDNGA29), and European roe deer
(Roe01, Roe09) have proved to be polymorphic in Siberian
roe deer, and were used through the cross-species amplifica-
tion in this study (Additional file 1: Table S2). Genomic
DNA was amplified for genotyping under the following con-
ditions. The touchdown profile for the PCR amplification
was at 94 °C for 15 min, followed by 20 cycles at 94 °C for
30 S, 65 °C for 60 S, and 72 °C for 30 S, with annealing
temperature decreased by 0.5 °C per cycle to 55 °C. The
touchdown cycles were followed by an additional 25 cycles
at 94 °C for 30 S, 55 °C for 1 min, 72 °C for 30 S, and a
final extension at 72 °C for 20 min. The PCR reaction
mixture contained MgCl, (2 mM), dNTP (each 0.2 mM),
and i-Star Taq DNA polymerase (0.025 U) of iNtRON
biotechnology Inc (Korea). One of three (Hex, 6-Fam,
Tamra) fluorescently-labeled M13 primers (0.26 pmol), un-
labeled M13-tailed forward primer (0.13 pmol), and reverse
primer (0.26 pmol) were also added to the reaction tubes.
All amplifications were implemented in a volume of 15 ul in
TaKaRa thermal cyclers. Alleles were determined by ABI
Prism3730 XL DNA Analyzer (Applied Biosystemsinc, USA)
using GENESCAN-500 [Rox] size standard and analyzed
GeneMapper version 3.7 (Applied Biosystemsinc, USA).

Data analysis

Summary statistics

Ten locations were used for basic analyses to obtain the
summary statistics, and to improve statistical power for
certain analysis like Bottleneck test, six locations with
geographical proximity and small sample size were fur-
ther pooled into three locations such as, (RSMG: RSO &
MGN), (RARN: RAL & RNO) and (RURK: RUL &
RKU). The number of all alleles per locus and popula-
tion (MNA), observed heterozygosity (Hp) and expected
heterozygosity (Hg) in Hardy-Weinberg equilibrium
were estimated for each locus using the Microsatellite
Toolkit, version 3.0 [55]. Allelic richness (Ar), F-statistics
(Fis, Fst) [56] and genotype linkage disequilibrium for
all pair of loci in population were determined using the
program FSTAT, version 2.9.3 [57]. Allelic Richness is
one of important measures of genetic diversity and is
calculated based on a minimum sample size of each
population to compensate for the differences in sample
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size among populations. Wilcoxon signed rank test was
employed to assess differences in allelic richness and ex-
pected heterozygosity that are corrected by small sample
sizes using the STATISTIX version 8.1 (Analytical Soft-
ware, Statistix; Tallahassee, FL, USA, 2000). The number
of loci with null alleles was assessed using MICRO-
CHECKER ([58]. Occurrence of null alleles can lead to
diminution in genetic diversity and inflate genetic differ-
entiation among population [59]. Null alleles can be
common owing to ascertainment bias and sequence vari-
ation especially when microsatellites from cross-species
amplification are used. The number of private alleles
and genetic characteristics of 12 microsatellite loci for
ten regional samples were determined using the GenA-
IEx version 6.1 [60]. The program CERVUS, version 2.0
was used to calculate the polymorphism information
content (PIC), observed heterozygosity (Ho) and ex-
pected heterozygosity (Hg) of each locus [61]. Deviations
from Hardy-Weinberg equilibrium (HWE) for each geo-
graphic population were evaluated using the exact prob-
ability test [62] using the Fisher procedure calculated by
GENEPOQOP, version 3.3 [63].

Gene flow measures

The pattern of gene flow between populations was mea-
sured using two different approaches. First, the effective
number of migrants per generation (N.m) between pop-
ulations was calculated from with the following formula:
Nem=(1-Fgy) | 4Fgr [64], where N, is the effective
population size and m is the migration rate. This gene
flow (Nm) estimate is an approximation of a particular
theoretical model (Island model) at equilibrium that mi-
gration occurs at the same rate with equal population
size. Fst is a measure of genetic differentiation between
populations and allows estimation of relatively long-
term gene flow based on allele frequency distributions.
Pairwise Fsr between populations and their significance
calculated using the program FSTAT version 2.9.3 [57].
Also, pairwise Fst were corrected by the ENA method
(excluding null alleles) using the FREENA software [65].
The difference between the ENA corrected and uncor-
rected Fst values was evaluated by the Wilcoxon rank
sum test using the STATISTIX version 8.1 (Analytical
Software, Statistix; Tallahassee, FL, USA, 2000).

Genetic relationship

The genetic relationship between populations was evalu-
ated by the Nei’s genetic distances (D,) [66] based on al-
lele frequencies using the program DISPAN [67].
Genetic relationship trees were constructed by un-
weighted pair group method with the arithmetic mean
(UPGMA) [68] based on D, distance with 1000 boot-
strap replications to test the validity of tree topologies.
Principal coordinate analysis (PCA) was conducted using
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the covariance matrix of allele frequencies using the
GENALEX version 6.1 [60]. Two principal values with
the first and second highest factor scores were employed
to construct a scatter diagram to visualize genetic rela-
tionships among populations. The GENALEX version
6.1 was further used to carry out hierarchical analysis of
molecular variance (AMOVA) of genetic differentiation
among populations and regions, and F-statistics (Frp
Fsr, Fst, Fis and Fit). According to the geographical dis-
tance, ten roe deer populations were divided into four
main regions for the AMOVA analysis: Jeju Island,
South Korea (SKJ), East region (SKM, RPR), Central re-
gion (RYA, RSO, MGN) and West region (RAL, RNO,
RUL and RKU). Besides, according to the structure re-
sult (three clusters), eight roe deer populations were di-
vided into three main regions excluding the two
admixed populations (RYA, RAL) for the AMOVA ana-
lysis: Jeju Island, South Korea (SKJ), Eastern region
(SKM, RPR, RSO and MGN) and Western region (RNO,
RUL and RKU). Additionally, seven populations were di-
vided into two main regions with SKJ and two admixed
populations (RYA and RAL) excluded: Eastern region
(SKM, RPR, RSO, MGN) and Western region (RNO,
RUL, RKU). Significance level was calculated by the per-
mutation procedure (999 permutations).

Population structure
Existence of population genetic structuring was evaluated
using the model-based Bayesian clustering method in the
program STRUCTURE version 2.3.4 [69], which infers the
number of genetic clusters (K) without prior information
about population origin. This method calculates inde-
pendent assessments of each individual for each cluster.
The log-likelihood data [Ln Pr (X/K)] was estimated for
given K between 1 and 10 with ten independent runs set
by 1,000,000 Markov chain Monte Carlo (MCMC) itera-
tions followed by burn-in period of 100,000 iterations.
The “real” value of K within the dataset was estimated
from the Ln Pr (X/K) according to the method of Evanno
et al. [23], in which log-likelihood values and variance
from each replicate of K were used to calculate AK. An ad
hoc statistic test in this parameter was used in simulations
to identify the true number of genetic clusters, which of-
fers accurate means to selecting K instead of choosing a K
with the highest log probability that could lead to overesti-
mated K [23]. Existence of Isolation-by-distance (IBD)
[64] was obtained by the regression of genetic distance
(Fst / (1-Fst)) on geographic distance (Ln-Km) between
pairs of populations. The correlations for two variables
and probability were carried out using the Mantel’s test in
GENALEX version 6.1 and significance was determined
based on 999 permutations [60].

We also applied Monmonier’s maximum difference al-
gorithm to highlight geographical features with obvious
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genetic discontinuity between populations using the pro-
gram BARRIER version 2.2 [70]. The data from nine
populations except Jeju island, Korea (SKJ) were ana-
lyzed to detect putative barriers of gene flow among the
populations. Geographical coordinates were used for
each population and connected by Delauney triangula-
tion using a pairwise Fst genetic matrix. We conducted
the analysis using Fsr for each of the eleven microsatel-
lite loci; exclude IDVGA29 due to low polymorphism, to
make sure that the barriers were not verified with strong
differentiation at only few loci. Each locus indicates how
many support a given barrier and putative genetic
boundaries were identified across the geographical land-
scapes. Pairwise Fst, Rgt and pRst (Rt computed after
allele size permutation test with 1000 randomizations)
were calculated per each population and locus to esti-
mate the main causes of population differentiation in
Siberian roe deer using program SPAGeDi [71, 72]. Rst
was compared against the distribution of pRst values.

Bottleneck detection

Three different approaches were used to detect molecu-
lar evidence of historical population bottleneck. First, we
tested for deviations of expected heterozygosity (He)
relative to heterozygosity expected at drift-mutation
equilibrium (H.q) by Wilcoxon sign-rank tests (= =0.05,
«=0.01) [73] using the BOTTLENECK version 1.2.02
[74, 75]. During bottlenecks, the number of rare alleles
is reduced faster than the heterozygosity at polymorphic
loci due to drift [66]. Thus the bottleneck test can detect
this disparity when H, becomes larger than H.q, because
Heq reflects allele number and sample size. We used a
two-phase mutation model (TPM) [76] using a setting of
10 % multiple-step mutations and 90 % single-step mu-
tations with 1,000 iterations. Secondly, we checked out a
mode-shift in distributions of allele frequencies from the
L-shaped distribution under the mutation-drift equilib-
rium, expecting distorted distribution under the recent
population bottleneck [77].

Lastly, M value of Garza & Williamson’s [24] was cal-
culated for each population to detect the long-term de-
crease of population size using the program AGARST
version 3.3 [78]. M is the mean ratio of the total number
of alleles to the range of allele size. This test is useful for
detecting a bottleneck further in the past (>100 genera-
tions). Meta-analysis for natural populations revealed
that historically reduced or founded populations had M-
ratio < 0.68, but stable populations showed M > 0.82.

Additional file

Additional file 1: Table S1. Genetic characteristics of 12 microsatellite
loci for Siberian roe deer from seven geographic regions in Asia. See Fig. 4
for sampling regions. Table S2: Source information and characteristics of 12
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microsatellite markers obtained from cross-species amplification. Table S3:
Wilcoxon signed rank test to assess differences in allelic richness (Ar) and
expected heterozygosity that are corrected by small sample sizes (UHg)
(one-tailed p-value). Figure S1: Bar graph of allelic diversity (Ar) and
expected heterozygosity that are corrected by small sample sizes (UHg) in
eight Siberian roe deer population. Table S4: Differentiation among three
regions (cluster) of Siberian roe deer estimated by pairwise Rst, mean pRst
and Fsr values per locus and multilocus.
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