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Abstract

Background: For most domestic animal species, including bovines, it is difficult to identify causative genetic
variants involved in economically relevant traits. The candidate gene approach is efficient because it investigates
genes that are expected to be associated with the expression of a trait and defines whether the genetic variation
present in a population is associated with phenotypic diversity. A potential limitation of this approach is the
identification of candidates. This study used a bioinformatics approach to identify candidate genes via a search
guided by a functional interaction network.

Results: A functional interaction network tool, BosNet, was constructed for Bos taurus. Predictions for candidate
genes were performed using the guilt-by-association principle in BosNet. Association analyses identified five novel
markers within BosNet-prioritized genes that had significant effects on different growth traits in Charolais and
Brahman cattle.

Conclusions: BosNet is an excellent tool for the identification of single nucleotide polymorphisms that are
potentially associated with complex traits.
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Background
In bovines, most economically relevant traits (ERTs) are
considered to be genetically complex traits; therefore,
different approaches have been utilized to identify gen-
etic variation related to phenotypic differences. However,
identifying causative genetic variants involved in ERT
phenotypes is a difficult task.
Although the genome-wide association approach has

become the most frequently applied strategy to identify
genetic variation that explains ERTs, the candidate gene
approach has also been widely used to identify genetic
variation. The candidate gene strategy is efficient because
it investigates genes that are expected to be associated
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with the expression of a trait and defines whether the gen-
etic variation present in populations is associated with
phenotypic diversity [1]. In an association study, two of
the critical steps used in the candidate gene approach are
selecting a suitable candidate gene and identifying the
most useful genetic variants or polymorphisms (if known)
for testing.
Traditionally, physiological function, positional cloning

and comparative genomic approaches have been used to
select candidate genes [2–6]; however, interaction net-
work analysis may also be an excellent alternative to
selecting candidate genes for ERTs in bovine. Lim et al.
[7] constructed a protein-protein interaction (PPI) net-
work to identify candidate genes for marbling traits in
bovines. These authors successfully identified candidate
genes associated with intramuscular fat and suggested
that the PPI approach can be used to identify biological
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pathways and regulatory elements involved in marbling-
related genes.
The guilt-by-association strategy uses biological infor-

mation available in databases and statistical methods to
identify potential candidate genes in silico. This ap-
proach searches for candidate genes based on their inter-
actions with a set of reference genes (genes previously
associated with a phenotype) [8]. This approach is based
on the tendency of genes associated with the same bio-
logical process to interact within a network and organize
themselves in modules or functional groups. Within
these modules, new candidate genes can be identified,
and gene interactions can be analyzed with a set of refer-
ence genes (genes previously associated with a pheno-
type). Based on these interactions, it is likely that these
genes will be strongly associated with the set of refer-
ence genes and that the single nucleotide polymor-
phisms (SNPs) in which they are found will be involved
in the same biological processes.
Hence, animal science has begun to utilize bioinfor-

matics to model and generate interaction networks that
represent the architectural genetics of complex traits in
bovines, such as marbling, age at puberty and reproduct-
ive characteristics [7, 9, 10]. The objectives of this work
were to develop BosNet as a tool for the identification
and prioritization of genes associated with complex
traits and to assess the efficiency of the BosNet tool in
associating SNPs located on BosNet-prioritized genes
with bovine growth traits.

Results
Modeled networks for B. taurus
A highly reliable integrated network was constructed for
Bos taurus. By identifying orthologous genes, 16,348
new annotations were obtained for bovine genes that
were previously lacking annotations, and their combin-
ation with known annotations (34,082) resulted in
50,380 annotations for B. taurus genes. The increased
number of functional annotations was used to obtain an in-
tegrated network referred to as BosNet. This network con-
sists of 1,747,160 associations among 16,065 genes, which
is equivalent to 73 % coverage of the bovine genome.
BosNet can be freely consulted at http://www.cbg.ipn.mx/
investigacion/Paginas/BosNet.aspx. In the current version
of BosNet (March 2015), the number of Gene Ontology an-
notations in the BP (Biological Process) domain has in-
creased by 113 % over the 2012 version of BosNet. The
current version consists of 4.19825 million interactions and
has 20 % greater B. taurus genome coverage.
By using a text mining approach, 60 genes associated

with different parameters related to bovine growth traits
were identified. This information permitted an immedi-
ate evaluation of the individual contribution of each of
the networks for B. taurus to correctly identify genes
previously associated with bovine growth. This ability
was characterized by receiver operating characteristic
(ROC) curves. The area under the curve (AUC) was
used as an indicator of the predictive power of each net-
work. The performance of each network modeled from
different databases was reduced compared with the per-
formance obtained from the integrated network, indicat-
ing that the use of these networks independently
reduces both the predictive power and coverage.
Identification and prioritization of candidate genes for
growth traits and gene variability in bovine breeds
In the analysis conducted using the BosNet network, the
positive predictive value (PPV) was calculated by estab-
lishing that all of the genes with an associated score ≥
39.6468 had a 53 % probability of being associated with
the growth trait. The genes that met this condition in-
cluded RXRA (retinoid X receptor alpha), IGF1R (insu-
lin-like growth factor 1 receptor), TCF15 (transcription
factor 15), INS (insulin), USF1 (upstream transcription
factor 1) and EGFR (epidermal growth factor receptor).
These genes were used as targets to determine varia-

tions in SNPs, which were used in association studies of
bovine growth traits. Three new INS gene polymorphisms
were identified (g.50,036,892 G >A; C > T g.50,036,987
and g.50,037,033 A >G). Five USF1 gene SNPs were
identified with four transitions and one indel (insertion-
deletion polymorphism). The g.8,458,558 A >G,
g.8,458,837 G >A, g.8,459,971 A >G, g.8,460,354 C > T
and g.8,460,878 C > T SNPs are located in intron 2, intron
3, intron 6, exon 8 and intron 9, respectively. The
g.8,459,028 -/C indel is located in intron 3. For the TCF15
gene, the analysis only revealed the presence of one SNP
(g.60,997,442 G > A), which corresponds to a transition lo-
cated within intron 1. The RXRA gene demonstrated the
highest SNP variation, with a total of 34 SNPs distributed
throughout the gene. Of these SNPs, 25 are located in in-
trons, including six transversions. The remaining eight
SNPs are located in coding regions, and the most signifi-
cant is a transversion located in exon 3.
Novel SNPs and GenBank-reported SNPs in the cod-

ing regions of the six genes were used for genotyping in
two bovine populations. Of the tested SNPs, 70 % and
50 % were monomorphic in the Charolais and Brahman
populations, respectively. The allelic frequencies from
the polymorphic SNPs are presented in Table 1.
Association of novel SNPs with growth traits in Charolais
and Brahman cattle
We tested the ability of the BosNet tool to prioritize
candidate genes by detecting associations between quan-
titative trait loci and growth traits in Charolais and
Brahman cattle.
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Table 1 Allele frequencies of SNPs located in BosNet-prioritized
genes

Breed Gene SNP_ID A C G T

Charolais EGFR rs11004527 0.5217 0.4783

rs13687792 0.4275 0.5725

rs21017031 0.1413 0.8587

rs21165825 0.9312 0.0688

rs37921750 0.2283 0.7717

rs38513127 0.2681 0.7319

IGF1R rs13486888 0.5657 0.4343

rs20814099 0.6957 0.3043

rs21077860 0.5438 0.4562

rs38090000 0.0725 0.9275

rs4164070 0.1739 0.8261

rs4196133 0.8514 0.1486

INS rs10949071 0.7799 0.2201

RXRA g.105,985,027 0.5833 0.4167

g.105,985,044 0.3496 0.6504

g.106,004,449 0.3664 0.6336

g.105,986,715 0.9565 0.0435

TCF15 g.60,997,442 0.3043 0.6957

Brahman EGFR rs11004527 0.1187 0.8812

rs13687792 0.1415 0.8585

rs21017031 0.8738 0.1262

rs37921750 0.0613 0.9387

rs38513127 0.0619 0.9381

IGF1R rs13486888 0.9159 0.0841

rs20814099 0.8679 0.1321

rs20973667 0.1682 0.8318

rs378266791 0.5685 0.4315

INS g.50,037,033 0.0896 0.9104

g.50,036,892 0.2404 0.7596

g.50,036,987 0.3396 0.6604

RXRA g.106,004,142 0.5054 0.4946

g.106,004,147 0.5841 0.4159

g.105,986,149 0.425 0.575

g.105,989,179 0.4074 0.568

g.106,004,180 0.7938 0.2062

g.106,004,184 0.3586 0.6414

g.105,989,219 0.8048 0.1952

g.105,989,022 0.4112 0.5888

g.105,990,023 0.1898 0.8102

g.105,989,236 0.8102 0.1898

g.106,011,253 0.4348 0.5652

g.105,985,027 0.0521 0.9479

g.105,985,044 0.7128 0.2872

Table 1 Allele frequencies of SNPs located in BosNet-prioritized
genes (Continued)

g.106,004,449 0.6311 0.3689

g.106,004,518 0.5728 0.4272

g.106,011,539 0.6038 0.3962

g. 105,990,568 0.82 0.18

g.105,989,080 0.4151 0.5849

rs13628911 0.875 0.125

TCF15 g.60,997,442 0.0888 0.9112

USF1 g.8,458,558 0.2286 0.7714

g.8,458,837 0.774 0.226

g.8,459,971 0.2667 0.7333

g.8,460,354 0.226 0.774

BW Birth weight, WW Weaning weight, YW Yearling weight, FS Frame size. MC
mean comparison, means with different letter are significantly different
(P < 0.05). *P < 0.05; **P < 0.01
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In the Brahman population, the association analysis
demonstrated that only rs136289117 located in the
RXRA gene had a significant effect (p = 0.0394) on wean-
ing weight (WW). The heterozygous genotype mean
WW (215.029 kg) was approximately 10 kg higher than
that of the homozygous CC genotype (206.152 kg).
For Charolais cattle, the association analysis resulted

in four novel SNPs that were significantly associated
with growth traits (P ≤ 0.04) (Table 2). The TT genotype
of the rs210778604 SNP in the IGF1 receptor gene had a
significant effect on birth weight (BW), which was 2.5 kg
higher than the BW of the heterozygous (CT) and
homozygous (CC) genotypes (Table 2). Interestingly, this
same locus was significantly related to frame size (FS).
The favorable CC genotype produced slightly taller
animals (P = 0.0195). The g.106,0040,449 marker located
in the RXRA gene was significantly associated with WW.
The WW of animals with the CT genotype was approxi-
mately 21 kg higher than that of homozygous TT ani-
mals (P = 0.0028). The same marker was associated with
yearling weight (YW); animals with the CT genotype
were 27 kg heavier than animals with the TT genotype
(P = 0.0300).
For rs208140993 located in the IGF1R gene, animals

harboring the TT genotype had higher WWs than those
with complementary genotypes (P = 0.0243). Finally, the
rs385131275 marker in the EGFR gene was significantly
associated with WW. Animals with the AA genotype ex-
hibited WWs that were 40 and 30 kg higher than those
of the heterozygous (GA) and homozygous (GG) geno-
types, respectively.

Discussion
The network generated in this research presented sig-
nificant differences from the interaction networks previ-
ously reported for B. taurus. Differences were observed



Table 2 Least square means (LSM) ± standard error (SE) of
individual effects of evaluated SNPs on growth traits in Charolais
cattle

Trait Loci P-value n Genotype LSM SE MC

BW rs210778604 0.0486 41 CC 47.136 2.883 b

67 CT 46.131 2.677 b

29 TT 49.990 2.917 a

WW g.106,004,449 0.0028 0 CC - -

96 CT 234.443 11.481 a

35 TT 213.714 12.314 b

rs208140993 0.0243 18 TT 246.334 14.342 a

48 TC 230.394 12.179 b

72 CC 220.772 11.728 b

rs385131275 0.0059 71 GG 231.393 11.725 b

60 GA 219.081 11.758 b

7 AA 260.889 17.546 a

YW g.106,004,449 0.0300 0 CC - -

72 CT 420.272 26.108 a

21 TT 392.381 27.821 b

rs208140993 0.0695 16 TT 441.990 28.998 a

64 TC 412.568 26.611 b

49 CC 411.772 26.397 b

FS rs210778604 0.0195 32 CC 119.651 2.810 a

57 CT 118.557 2.531 b

23 TT 114.363 2.855 b
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in the sources of information, the methods applied to
construct the networks and their coverage, and the num-
ber of established interactions. For example, in 2011,
Lim et al. [7] employed a literature mining tool to predict
genes specifically associated with marbling in cattle and
derived two networks primarily associated with the char-
acteristic of interest based on the orthologous relationship
between B. taurus and Homo sapiens (interologous
method). The first network demonstrates high reliability
and consists of 52 genes. Among these genes, 61 interac-
tions were established. The second network is a wide-
spread network composed of 1090 genes and 1517
interactions. After a topological analysis, 20 genes (with a
node degree ≥ 25) were selected as candidate genes related
to bovine marbling. Five of these genes were associated
with bovine marbling when the expression profile of each
gene was evaluated.
Similarly, Hulsegge et al. [10] prioritized candidate

genes for reproductive characteristics in cattle based on
PPIs reported for existing orthologous genes between B.
taurus and H. sapiens in the STRING database. The
genes were prioritized using the average of two calcu-
lated scores. The first score was based on the expression
profiles of each gene. The second score was based on a
literature search. An enrichment analysis was performed
using the Database for Annotation, Visualization and In-
tegrated Discovery (DAVID), and represented biological
processes were observed. In this work, 59, 89, 53, 23 and
71 candidate genes were identified with associations with
reproductive traits in the amygdala, dorsal hypothal-
amus, hippocampus, anterior pituitary and ventral hypo-
thalamus, respectively.
Moreover, the coverage values established in BosNet

(16,065 genes and 1,747,160 interactions, equivalent to 73 %
coverage) were higher than the values estimated by Lim and
Hulsegge (4.9 and 27 %, respectively). Thus, BosNet relies
on the concept of functional interaction networks and the
integration of a wide variety of heterogeneous biological data
(orthology relationships with different organisms, interac-
tions reported in various databases, correlations between
expression levels, similarities between nucleotide sequences,
and shared functional domains), whereas the above-
mentioned networks were based on data extracted from
only a few sources of information.
In BosNet, each integrated experiment, whether genetic

or computational, added evidence for gene associations;
thus, a greater number of genes and biological processes
could be represented, which improved the coverage and
precision of the network [11]. This improvement is evi-
dent in the results plotted in the ROC curves, which as-
sess the predictive power of each of the networks derived
for B. taurus. The networks derived from a single source
of information exhibit a low level of predictive power, low
coverage and a reduced number of interactions relative to
the networks generated through the integration of diverse
biological data. The coverage (27 %) obtained by Hulssege
et al. [10] is noteworthy because the coverage was greater
than that achieved in previously reported networks and
exhibited greater predictive power than STRING (AUC
0.51) in this study, which was similar to the performance
obtained in the integrated network BosNet (AUC 0.64).
These results were expected because the interactions in
STRING were generated using an integrative method that
is conceptually similar to the methodology applied in the
present study [12]. Another important point is that the
predictive power (i.e., ROC curve) of the networks re-
ported for B. taurus that indicates the ability of each of
these networks to correctly identify genes involved in a
particular characteristic have not been assessed.
The coverage and number of interactions established in

BosNet are similar to the results of functional interaction
networks reported for other organisms of major economic
and scientific importance, such as Oryza sativa, Arabidopsis
thaliana, Saccharomyces cerevisiae, Caenorhabditis elegans,
Mus musculus and H. sapiens, whose coverages range from
50 to 95 % of the genes reported for each of the organisms,
with the number of established interactions ranging from
100,000 to 1.7 million [11, 13–17].



Table 3 Novel and reported SNPs for association analysis

Gene Gen location Allele Amino acid (AA) Change of AA class AA position SNP IDa

RXRA Exon 1 [C/T] Pro (P) Ser (S) 8 rs209839910

Intron 1 [A/G] ———— ———— ———— g.105,985,004

Intron 1 [G/T] ———— ———— ———— g.105,985,027

Intron 1 [T/G] ———— ———— ———— g.105,985,044

Intron 1 [G/A] ———— ———— ———— g.105,985,130

Intron 1 [C/T] ———— ———— ———— g.105,986,006

Exon 2 [A/G] Ser (S) No change 136 g.105,986,149

Exon 3 [G/T] Val (V) No change 148 g.105,986,715

Exon 3 [A/C] Asn (N) Thr (T) 162 rs137184653

Exon 4 [C/T] Pro (P) Leu (L) 198 g.105,989,022

Exon 4 [C/T] Thr (T) No change 217 g.105,989,080

Intron 4 [G/A] ———— ———— ———— g.105,989,114

Intron 4 [A/G] ———— ———— ———— g.105,989,179

Intron 4 [T/C] ———— ———— ———— g.105,989,219

Intron 4 [T/C] ———— ———— ———— g.105,989,236

Intron 4 [G/A] ———— ———— ———— g.105,989,283

Exon 5 [G/A] Arg (R) Lys (L) 245 g.105,989,790

Intron 5 [G/A] ———— ———— ———— g.105,989,983

Intron 5 [A/C] ———— ———— ———— g.105,990,023

Exon 7 [G/A] Pro (P) No change 357 g. 105,990,568

Exon 8 [T/C] Arg (R) No change 370 rs136289117

Intron 9 [G/A] ———— ———— ———— g.106,004,142

Intron 9 [A/C] ———— ———— ———— g.106,004,147

Intron 9 [G/A] ———— ———— ———— g.106,004,180

Intron 9 [A/G] ———— ———— ———— g.106,004,184

Intron 10 [T/C] ———— ———— ———— g.106,004,449

Intron 10 [C/A] ———— ———— ———— g.106,004,518

Intron 12 [G/A] ———— ———— ———— g.106,009,252

Intron 12 [G/A] ———— ———— ———— g.106,009,293

Intron 12 [C/T] ———— ———— ———— g.106,011,088

Intron 12 [C/G] ———— ———— ———— g.106,011,096

Intron 12 [T/G] ———— ———— ———— g.106,011,126

Exon 13 [C/T] Ile (I) No change 667 g.106,011,238

Exon 13 [C/T] Pro (P) No change 672 g.106,011,253

Intron 13 [C/T] ———— ———— ———— g.106,011,448

Intron 13 [C/T] ———— ———— ———— g.106,011,466

Intron 13 [G/A] ———— ———— ———— g.106,011,539

IGF1R Exon 1 [T/C] Ser (S) No change 4 rs379619394

Exon 1 [A/G] Gly (G) Arg (R) 6 rs385718425

Exon 1 [C/A] Leu (L) Ile (I) 25 rs209595810

Exon 1 [T/G] Ile (I) Met (M) 28 rs380419725

Exon 1 [T/G] Ser (S) Ile (I) 29 rs378266791

Exon 2 [T/C] Cys (C) No change 33 rs134868883

Exon 7 [T/C] Asp (D) No change 491 rs41961336
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Table 3 Novel and reported SNPs for association analysis (Continued)

Exon 7 [A/C] Thr (T) Pro (P) 496 rs135514117

Exon 7 [C/T] Ser (S) Pro (P) 497 rs132825686

Exon 8 [C/T] Ala (A) No change 583 rs385548776

Exon 10 [C/T] Asp (D) No change 675 rs210778604

Exon 11 [C/T] Thr (T) No change 773 rs209736678

Exon 12 [G/A] Pro (P) No change 837 rs41640706

Exon 13 [C/T] Ser (S) No change 881 rs133373507

Exon 16 [C/T] Tyr (Y) No change 987 rs208140993

Exon 19 [G/A] Lys (K) No change 1168 rs380900001

Exon 21 [G/A] Ser (S) No change 1308 rs384753755

TCF15 Exon 1 [C/G] Asp (D) Glu (E) 32 rs134079367

Exon 1 [T/G] Ser (S) Ala (A) 37 rs137532487

Exon 1 [A/C] Gln (Q) Pro (P) 73 rs134702498

Intron 1 [G/A] ———— ———— ———— g.60,997,442

INS Exon 1 [G/A] Ala (A) Thr (T) 24 rs383254521

Intron 1 G/A ———— ———— ———— g.50,036,892

Intron 1 C/T ———— ———— ———— g.50,036,987

Intron 1 A/G ———— ———— ———— g.50,037,033

Exon 2 [T/G] Val (V) Gly (G) 63 rs135743222

Exon 2 [C/T] Pro (P) Leu (L) 72 rs109490717

Exon 2 [C/T] Pro (P) Leu (L) 80 rs109229312

EGFR Exon 1 [T/C] Lys (K) Arg (R) 29 rs136877925

Exon 4 [T/C] Asn (N) Asp (D) 182 rs135955902

Exon 6 [T/G] His (H) Pro (P) 233 rs137416447

Exon 7 [A/G] Asn (N) No change 280 rs209095847

Exon 8 [C/T] Val (V) Ile (I) 318 rs211658253

Exon 18 [T/C] Ser (S) No change 720 rs210170316

Exon 21 [T/C] Ala (A) No change 839 rs110045273

Exon 25 [G/A] Arg (R) No change 999 rs379217506

Exon 28 [G/A] Val (V) No change 1107 rs385131275

USF1 Intron 2 A/G ———— ———— ———— g.8,458,558

Intron 3 G/A ———— ———— ———— g.8,458,837

Intron 6 A/G ———— ———— ———— g.8,459,971

Exon 8 C/T Ser (S) No change 236 g.8,460,354

Intron 9 C/T ———— ———— ———— g.8,460,878
aBased on GenBank Bos taurus genomic sequence: 507554 (RXRA), IGF1R (281848), TCF15 (518491), 280829 (INS), 407239 (USF1), and 407217 (EGFR)
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Currently, the availability of different types of biological
data, such as functional annotations for B. taurus genes, is
limited compared with the information available for more
thoroughly studied organisms, such as H. sapiens [10].
Recently, systems biology approaches have revealed

that genes associated with the same or related pheno-
types tend to participate in common functional modules
(such as protein complexes and metabolic pathways).
Moreover, the analysis of protein interaction networks
and the neighborhood of a given protein within the
network have been used to functionally characterize
proteins (guilt-by-association approach).
The guilt-by-association strategy has been widely

applied. For example, Lee et al., in 2008 [13], 2010 [18]
and 2011 [16], identified genes directly associated with
different phenotypes in C. elegans, A. thaliana and
O. sativa, respectively, through an analysis of functional
interaction networks.
Due to high genetic variation in the genome, SNPs

have become the most useful type of marker for gene
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mapping and association studies. In bovines, different
strategies have been used to discover SNPs and assess
SNP associations with ERTs. Lee et al. [19] reported a
pipeline to analyze non-synonymous SNPs in B. taurus
after screening the SNPs, which were reported as coding
SNPs (cSNPs). They detected 15,353 candidate cSNPs
and established a panel of 41 SNPs to evaluate associa-
tions with puberty age, facial eczema resistance and
meat yield. Three SNPs were nominally associated with
facial eczema resistance (P < 0.01).
Commercial arrays in genome-wide association studies

(GWAS) have been widely used to understand the gen-
etic basis of complex traits in B. taurus; however, the
genetic variation underpinning these traits cannot be ex-
clusively explained by this approach. High-throughput
sequencing technology could serve as an alternative, but
sequencing large numbers of individual genomes re-
mains prohibitively expensive.
Here, we used BosNet to prioritize novel and reported

genetic variation in six candidate genes based on SNPs
and performed an association study for growth traits.
Because IGF1R is established in the bovine somatotro-

pic axis, the IGF1R gene is one of the only BosNet-
prioritized candidate genes that was previously associ-
ated with bovine growth traits. The IGF1R gene is the
primary receptor for insulin-like growth factors (IGFs),
which perform the metabolic signal transduction respon-
sible for cell proliferation, bone growth and protein syn-
thesis in the GH-IGF pathway.
The IGF1R/Taq I polymorphism in one of the introns

of this gene, which was identified by Moody et al. [20],
has been analyzed in several studies but has not been
associated with growth traits. Researchers have con-
cluded that this lack of association is caused by the ab-
sence of one of its alleles in B. taurus; its low frequency
in B. indicus; and its location on chromosome 21, which
is one of the least favorable chromosomes for finding
loci associated with growth and carcass composition
[21–23]. Here, we identified novel polymorphic markers
in IGF1R both in Charolais and Brahman cattle. Of these
markers, rs210778604 and rs208140993, located in the
IGF1R coding regions, were significantly associated with
BW/FS and WW, respectively. However, validation of
these results with a higher number of animals is
required.
The RXRA gene produces a protein that belongs to a

family of transcription factors and plays an important
role in fat storage and movement. In knockout mice, this
transcription factor demonstrated resistance to obesity
induced by chemicals that can be found in diets. Adipo-
genesis and lipolysis were also affected [24]. This gene
demonstrated high genetic variation in the studied pop-
ulations. We confirmed at least 20 SNPs. SNP
g106,0040,449 demonstrated a significant association
with WW and YW in the Charolais population. BW is
correlated with calving ease and survival, and WW is a
reliable index of adult weight performance and product-
ive efficiency [25]. Therefore, confirmation of the associ-
ation is important to include this marker as a tool for
marker-assisted selection based on these traits.
Finally, EGFR, which is located on the cell surface, is a

mediator of cellular proliferation and differentiation.
The binding of its ligand activates a tyrosine kinase that
phosphorylates various substrates, thus activating path-
ways promoting cell growth and DNA synthesis [26].
Here, we found that animals with the AA genotype for
the rs385131275 marker from the EGFR gene exhibited
WWs that were 40 and 30 kg higher than those of ani-
mals with heterozygous (GA) and homozygous (GG) ge-
notypes, respectively.
Insulin is a polypeptide hormone produced and se-

creted by the beta cells of the islets of Langerhans in the
pancreas. Insulin improves the absorption of glucose in
cells. Qui et al. [27] proposed insulin gene as a candidate
gene for the genetic analysis of complex traits, such as
growth rate, body composition and fat deposition, in
chickens. They analyzed the associations of four poly-
morphisms located in non-coding regions with 13 differ-
ent characteristics of growth and body composition.
Their findings indicated that one of the polymorphisms
and a combination of haplotypes were significantly asso-
ciated with BW adjusted to 28 days.
Here, we confirm polymorphisms of novel and previ-

ously reported SNPs located in the bovine INS gene.
However, no association with the analyzed growth traits
was observed.
The participation of the remaining candidate genes

(i.e., USF1 and TCF15) in bovine growth could be de-
duced based on the function established for each of the
genes (no association results for this trait were identified
in this study, and none have been identified in cattle to
date). In mice, the TCF15 gene revealed that this tran-
scription factor is an important regulator of a subset of
myogenic cells of the dorsolateral dermomyotome asso-
ciated with the formation of non-migratory hypaxial
muscles (abdominal and intercostal) [28]. Moreover,
USF1 is a transcription factor that has been suggested to
act as a negative regulator of cell proliferation because it
competes for DNA binding sites with transcription
factors, such as Myc, which is involved in transfor-
mation, cellular proliferation and apoptosis [29, 30].
From a panel of 79 SNPs, we determined that markers

rs210778604 and rs208140993 (located in the IGF1R
coding regions) were associated with BW/FS and WW,
respectively (Table 2). In addition, markers rs385131275
and g.106,004,449 (located on the EGFR and RXRA
genes, respectively) were significantly associated with
WW and YW in Charolais cattle.
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The number of nominally significant associations and the
strength of these associations with growth traits were com-
pared to the results obtained from studies that applied the
GWAS approach to identify markers associated with
growth traits [31]. Thus, BosNet can be used as a
prioritization tool to direct the search for novel SNPs that
are potentially associated with ERTs.
Updating BosNet is a dynamic process that adds new

genes and increases the robustness of each represented
biological process. Thus, novel interactions appear that
may change the prioritization weighting of each interaction
net. Because of this effect, BosNet users must consider that
after an update, genes prioritized with a previous version
of BosNet may no longer receive prioritization, even if they
are still part of the interaction. Here, we use data from the
2012 version of BosNet, as it was at that time that we ini-
tially prioritized all the candidate genes that were geno-
typed and associated with growth traits. According to our
records, the prioritization weightings for these genes did
not change significantly from those obtained using the
BosNet version updated in December 2014; however, in
the current version of BosNet (March 2015), none of the
previously prioritized genes reached the confidence thresh-
old. We are currently working to improve the network top-
ology analysis. Meanwhile, BosNet users must consider the
uniformity of the selected candidate genes and favor those
genes that increase the number of strong interactions.

Conclusions
By integrating heterogeneous biological data, a func-
tional interaction network, BosNet, was constructed for
B. taurus; BosNet provides 73 % coverage of the esti-
mated genes in the bovine genome.
The transfer of functional Gene Ontology BP annota-

tions to B. taurus genes from orthologous genes in more
extensively studied organisms increased the coverage
and precision of the integrated network compared with
the exclusive use of Gene Ontology annotations reported
for B. taurus.
INS, TCF15, IGF1R, RXRA, EGFR and USF1 were

identified as candidate genes associated with bovine
growth traits through a search guided by BosNet. Re-
sequencing of the coding regions of the candidate genes
INS, USF1, TCF15 and RXRA identified three, five, one
and 34 new SNPs, respectively, as candidates associated
with phenotypic variation of bovine growth traits. From
these novel SNPs, associations with growth traits were
identified in Brahman and Charolais cattle.
Methods
Construction of a functional network for B. taurus
As shown in Fig. 1, different databases were analyzed,
and information related to B. taurus was extracted for
modeling in an undirected graph G = (V, E), where V and
E are a set of vertices and edges in G. Each vertex repre-
sents a protein, and each edge (u, v) represents an asso-
ciation between proteins.
To provide a better confidence weighting between the

interactions, a normalization procedure was used. Given
a set of interactions E (network) from a k data source
where the vertices of each edge E have at least one func-
tional annotation, E was subdivided into subsets using
the following approach:

� The E interactions were analyzed to find the
maximum and minimum scores, Sk,max and Sk,min,
respectively.

� The E interactions were ordered in n subsets
b1.....bn, with equal intervals between Sk,max and
Sk,min.

� Each bi subset was used as a different subtype for
which confidence was assessed individually using
equation (1).

Given an observation Oe,k,S and interaction data source
with an S value k, the subset or subtype was determined
as follows:

BinIndexk Sð Þ ¼ min n; floor
S−Sk;min

Sk;max−Sk;min

� �
x n

� �
þ 1

� �

0

8<
:

9=
;
ð1Þ

Si S ≥ Sk,min

Si S < Sk,min

� S ≥ Sk,min and S < Sk,min represent the requirements
that each evaluated score must meet. The score may
be greater than, less than or equal to the minimum
score value in the net.

� If S ≥ Sk,min, the e confidence based on observation
Oe,k,S is calculated by the confidence of each subtype
defined by BinderIndexk(S).

� Given that Sk,min is determined by the test data
based on interactions in which both vertexes are
recorded, it is possible that S may be smaller than
Sk,min. If S < Sk,min, the e confidence based on the
Oe,k,S observation is considered to be 0 because it is
not possible to determine its confidence.

� The floor represents the n subset in the k database to
which each evaluated score belongs.

All of the interactions’ confidence values were re-
calculated by subset and database using BP domain of
Gene Ontology (http://www.geneontology.org/) (The
Gene Ontology Consortium, 2000) as a common
criterion. Annotations associated with B. taurus genes

http://www.geneontology.org/
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Fig. 1 BosNet construction. Information compiled from the different databases was modeled as an undirected graph (N1, N2, N3, N4). Each of the
nodes and vertices represents an interaction between a protein pair. The score associated with the graph interaction from each database is
represented by a different specific source (i.e., expression level, sequence homology, or conserved domains). Because of differences in the
measurement scales, standardization was required. New scores were assigned according to the reported functional annotations (Gene Ontology)
between interacting proteins. Finally, the different graphs were integrated to create an integrated functional network of interactions between
proteins. The final scores were calculated by assigning greater values to interactions that were represented in more than one database
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(~34,082) in the BP domain were downloaded in
November 2012.
The interaction confidence was calculated using

equation 2:

p k; fð Þ ¼
X

u;vð Þ∈Ekf
Sf u; vð Þ

Ekf

�� ��þ 1
ð2Þ

Ekf is the interaction subset from k database, where
each interaction has one or both vertexes annotated with
f function and both vertexes have at least one functional
annotation.
Sf(u, v) = 1 if u and v share a function or 0 otherwise.
Multiple graphs constructed from the different data-
bases were combined to obtain a unique graph (G') that
includes all nodes and their associations. The confidence
of each interaction (u,v) in G' was calculated using equa-
tion 3:

ru;v;f ¼ 1−
Y

k∈Du;v
1−p k; fð Þð Þ ð3Þ

Du,v is the set of databases that have interactions (u,v).
Using the algorithm INPARANOID (http://inparanoid.

sbc.su.se/) [32], orthologous gene groups were identified
between B. taurus and other organisms, such as H.
sapiens, M. musculus, C. elegans, A. thaliana, O. sativa
and S. cerevisiae. The functional networks for each of

http://inparanoid.sbc.su.se/
http://inparanoid.sbc.su.se/
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these organisms were downloaded from the Functional-
Net server (http://www.functionalnet.org/): HumanNet
v.1 [15], MouseNet v.1 [14], WormNet v.2 [13], AraNet
v.1 [18], RiceNet v.1 [16] and YeastNet v.2 [33]. From
each of these functional networks, a B. taurus network
was derived using an interologous approach [34], and
the value previously associated with each of these inter-
actions served as the score of the association.
Data from four microarray experiments conducted in

B. taurus were downloaded from Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/info/
faq.html) [35]: GSE25005 [36], GSE23837 [37], GSE19
055 [38] and GSE35185 [39]. Using GEO2R (http:/ww
w.ncbi.nlm.nih.gov/geo/geo2r), differentially expressed
genes were identified with an adjusted p-value ≤ 0.05.
We combined the above-mentioned DNA microarray
experiments to create a single, consistent expression
vector for each differentially expressed gene and then
measured the Pearson correlation coefficient between
these mRNA expression vectors. Thus, a pair of genes
was connected with an edge if the Pearson’s correlation
coefficient was ≥ 0.7. This value was also used as a confi-
dence score associated with each interaction.
The BioGRID (http://www.thebiogrid.org) [40], STRING

(http://string.embl.de/) [12] and IntAct (http://www.ebi.ac.
uk/intact/) [41] databases were downloaded in December
2014. These databases list the interactions between proteins
derived from different methods; thus, the proteins are
already associated in networks. For this reason, only exist-
ing interactions between B. taurus proteins were extracted.
Information assigned to the proteome functional

domains of B. taurus was downloaded in December 2014
from the Pfam database (http://pfam.sanger.ac.uk) [42].
An association between two proteins was considered to
exist if they shared at least one functional domain. The
number of shared domains between each protein was used
to represent the score associated with each interaction.
The sequences reported for proteins in the B. taurus

genome (23,657) were downloaded from the National
Center for Biotechnology Information (NCBI) (http://w
ww.ncbi.nlm.nih.gov/). Using the BLAST application
(http://blast.ncbi.nlm.nih.gov/Blast.cgi), a database was
created to perform BLAST searches with the down-
loaded sequences. Using blastp, each of the reported B.
taurus protein sequences was compared with the gener-
ated database. To model this information as a network,
an association between two proteins was established
when their alignment length was ≥ 50 % of the length of
the query protein. The percentage of similarity was ≥
40 %, and the e-score was < 0.0001. The negative loga-
rithm of the e-score was used for the associated score of
each interaction.
The 15 B. taurus networks derived using the different

methods and databases were integrated via the strategy
reported by Chua et al. [43], namely, Integrated
Weighted Averaging (IWA). The subset size was 10. To
recalculate the associated scores, Gene Ontology
(http://www.geneontology.org/) [44] annotations asso-
ciated with B. taurus genes (~32,082) in the BP domain,
which was downloaded in November 2012, were used.
Approximately 8243 bovine genes lacked a functional

Gene Ontology BP annotation, which directly affected
the number of genes that were integrated and the quality
of the predictions. To counter this effect, the B. taurus
genes without annotations were assigned functional
Gene Ontology annotations based on orthology. Thus,
orthologous groups of genes present in H. sapiens, M.
musculus, C. elegans, and S. cerevisiae were identified,
and annotations that were present in each of these or-
ganisms were identified and transferred to the genes in
question. BosNet was generated by integrating all of the
information (Fig. 1).

Identification and prioritization of candidate genes for
growth traits
Genie software (http://cbdm.mdc-berlin.de) [45] was
used to perform PubMed based-text mining of genes
that were previously associated with bovine growth traits
(reference genes).
To identify and prioritize candidate genes for each of

the integrated networks, the interactions of the reference
genes were extracted, and the degree of association with
growth (DAG) was calculated for each of the genes in
the following subnet.

DAG ¼
X

j ∈ ref genes
W ij :

X
j ∈ ref genes

Pij

where Wij is the linkage weight connecting protein i
and reference protein j and Pij is the number of links
connecting protein i and reference protein j (excluding
itself ). Thus, the probability that each of these proteins
is associated with growth was evaluated based on the
protein’s interaction with genes whose biological func-
tion had already been associated with this trait.
Using this information, the predictive power of each of

the modeled networks for B. taurus was evaluated, and
the ability of these networks to correctly identify genes
associated with growth was measured. This predictive
power was characterized using ROC curves. The AUC
was used as an indicator of the predictive power. AUC
values ≤ 0.5 represent random predictions; AUC values >
0.5 represent predictions ranging from average to good.
For the selection of candidate genes involved in

phenotypic variations in growth traits, the new score
was used to calculate PPV, which indicates the likelihood
of gene association with the growth trait [46]. The selec-
tion criterion for candidate genes to be associated with

http://www.functionalnet.org/
http://www.ncbi.nlm.nih.gov/geo/info/faq.html
http://www.ncbi.nlm.nih.gov/geo/info/faq.html
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.thebiogrid.org/
http://string.embl.de/
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
http://pfam.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.geneontology.org/
http://cbdm.mdc-berlin.de/
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bovine growth was a PPV greater than 0.5 (genes with a
greater than 50 % probability).

Discovery and association of SNPs located in prioritized
genes with growth traits
The DNA of two populations was used to conduct the ex-
perimental evaluations in this work. All sampling proce-
dures were approved by the Institutional Investigation
Ethics Committee (Escuela Superior de Medicina, IPN).
The SNP discovery population consisted of nine individ-
uals from varying breeds based on their genetic back-
ground and productive purpose (three Holstein, three
Brahman and three Charolais). The second group of
animals included 237 animals (99 Brahman and 138
Charolais samples). All of the animals were registered, and
productive data (weight at birth, weaning and one year
of age) were available.
All of the samples were genotyped with 79 SNPs

(Table 3) located at the previously prioritized candidate
genes using the Sequenom MassARRAY® platform
(GeneSeek, Inc., Lincoln, NE, USA). The genotypic and
allelic frequencies were estimated using Genepop® 4.0.10
software [47, 48].
Data regarding the growth traits of a 237-animal popu-

lation of Brahman (n = 99) and Charolais (n = 138) cattle
were used to assess the effect of new and previously
identified SNPs by BosNet. Brahman data were fitted
using a general linear model procedure that included
fixed effects (herd, birth season and sex), random effects
(sire and birth year), and the individual effects of geno-
type in each studied SNP. The adjusted growth traits in-
cluded BW, WW and YW. Charolais data were only
fitted with the fixed effects of sex, season and birth year.
For Charolais data, growth traits were also described by
analyzing the Frame Size (FS). The least mean squares of
the genotypes were estimated for SNPs that demon-
strated a significant effect, and a mean comparison was
performed using the piecewise differentiable (PDIFF)
method. All of the procedures were performed using
SAS 9.0 software (SAS Institute Inc., Cary, NC, USA).
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