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Abstract

Background: Genome-wide association studies (GWAS) interrogate large-scale whole genome to characterize the
complex genetic architecture for biomedical traits. When the number of SNPs dramatically increases to half million
but the sample size is still limited to thousands, the traditional p-value based statistical approaches suffer from
unprecedented limitations. Feature screening has proved to be an effective and powerful approach to handle
ultrahigh dimensional data statistically, yet it has not received much attention in GWAS. Feature screening reduces
the feature space from millions to hundreds by removing non-informative noise. However, the univariate measures
used to rank features are mainly based on individual effect without considering the mutual interactions with other
features. In this article, we explore the performance of a random forest (RF) based feature screening procedure to
emphasize the SNPs that have complex effects for a continuous phenotype.

Results: Both simulation and real data analysis are conducted to examine the power of the forest-based feature
screening. We compare it with five other popular feature screening approaches via simulation and conclude that RF
can serve as a decent feature screening tool to accommodate complex genetic effects such as nonlinear, interactive,
correlative, and joint effects. Unlike the traditional p-value based Manhattan plot, we use the Permutation Variable
Importance Measure (PVIM) to display the relative significance and believe that it will provide as much useful

information as the traditional plot.

Conclusion: Most complex traits are found to be regulated by epistatic and polygenic variants. The forest-based
feature screening is proven to be an efficient, easily implemented, and accurate approach to cope whole genome
data with complex structures. Our explorations should add to a growing body of enlargement of feature screening

better serving the demands of contemporary genome data.
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Background

High-throughput genotyping techniques and large data
repository capability give genome-wide association stud-
ies (GWAS) great power to unravel the genetic etiology
of complex traits. With the number of Single Nucleotide
Polymorphisms (SNPs) per DNA array growing from
10,000 to 1 million [1], ultra-high dimensionality is one
of the grand challenges in GWAS. The prevailing strate-
gies of GWAS focus on single-locus model [2, 3]. However,
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most complex traits are regulated by polygenetic variants,
which decreases the power of most popular traditional
p-value based approaches [4-7].

Epistasis [2, 8, 9], defined as the interactive effects of two
or more genetic variants (i.e. the effect of one genetic vari-
ant is suppressed or enhanced by other genetic variants),
has received growing attention in GWAS due to increas-
ing evidence of its important role in the development
of complex diseases [7, 10—12]. Epistasis will likely bring
key breakthroughs for detecting more susceptible loci for
various real life scenarios and for explaining larger heri-
tability of traits [13—16]. Many approaches have already
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been developed for detecting epistasis [17-20]. Despite
the fact that these approaches work nicely for detecting
epistasis with a moderate number of SNPs (n > p), they
quickly lose power and suffer from computational burden
when the dimension is ultrahigh (n >> p) [12].

There exists a big gap between current statistical mod-
eling of big data and the real demand of contemporary
entire genome data. Fan et al. elaborately introduced the
unusually big challenges in computational cost, statisti-
cal estimation accuracy, and algorithm stability caused
by ultrahigh dimensional data [21-23]. The population
covariance matrix may become ill conditioned as dimen-
sion grows as multicollinearity grows with dimensionality.
As a result, the number and extent of spurious correla-
tions between a feature and response increase rapidly with
increasing dimension because unimportant features are
often highly correlated with a truly important one. What
increases the difficulty is that multiple genetic variants
affect the phenotype in an interactive or correlative man-
ner but each have a weak marginal signal. Additionally,
without any priori information, modeling and search-
ing all possible pairwise and higher order interactions is
intractable when the number of features is very large. For
example, there will be around 8 million pairs involved
when simply considering 2-way interactions for only 4000
SNPs [24].

Feature Screening brings about a revolutionary time
in statistics due to its advantages in handling ultrahigh
dimensional data. It also fills the gap between tradi-
tional statistical approaches and demands of contempo-
rary genomics [25]. The sparsity principle (only a small
number of SNPs associate with the phenotype) of the
whole genome data matches well with the goal of the
feature screening. It has been confirmed that the compu-
tational speed and estimation accuracy are both improved
after dimension is reduced from ultrahigh to moderate
size [26]. The computational burden reduces dramati-
cally, from a huge scale (say exp{O(nh)}) to o(n). Most
important of all, aforementioned traditional statistical
approaches regain their power and feasibility after feature
screening removes the majority of confounding noises.
Fan and Lv proposed sure independence screening (SIS)
and iterated sure independence screening (ISIS) [26] to
overcome the challenges of ultra-high dimension. SIS
is shown to have the sure screening property (all truly
important predictors can be selected with the probability
tending to one as the sample size asymptotically diverges
to oo [26, 27]) for the case of n >> p. Fan and Song
developed SIS for generalized linear models [28]. Li et al.
proposed distance correlation learning (DC-SIS) without
assuming linear relation or restricting data type [27, 29].
Liu et al. proposed conditional correlation sure indepen-
dence screening (CC-SIS) to adjust the confounding effect
of a covariate [30].
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Although the advantages of the feature screening have
been sufficiently shown, almost all current feature screen-
ing approaches assign univariate rankings to consider
the individual effect of each feature and hence neglect
features that have weak marginal but strong joint or inter-
active effects. In addition, most existing feature screen-
ing approaches are not well-designed for examining two,
three, or higher-order interactive structures and nonlin-
ear structures. As an alternative direction, Random Forest
(RF) overcomes the aforementioned drawbacks of feature
screening. RF uncovers interactive effects even if the rel-
evant features only have weak marginal signals [31]. Each
hierarchical decision tree within the RF explicitly rep-
resents the attribute interaction of features through the
branches of the tree. As a result, as more and higher order
interactive SNPs are added to the model, the superiority of
RF increases. In particular, RF was claimed to outperform
Fisher’s exact test when interactive effects exist [32]. RF
can be flexibly modeled to both continuous and categori-
cal phenotype and nonlinear structures without assuming
any model structure or interaction forms.

The aim of this article is to assess the performance
of a forest-based feature screening approach for large-
scale whole genome data with complex genetic structures
such as epistastic, polygenic, correlative, and nonlinear
effects. The key problem that we emphasize is to select
a manageable number of important candidates from an
ultrahigh dimension of SNP pool, while keeping the case
of strong marginal signal, the case of of weak marginal but
strong interactive or correlative SNPs, and keeping both
linear and nonlinear structures. Unlike the traditional p-
value based Manhattan plot, we view the significance
of SNPs using permutation variable importance measure
(PVIM). The PVIM based Manhattan plot can provide as
much helpful information as the traditional p-value based
Manbhattan plot, additionally it considers the individual
effect of each SNP as well as accounting for the mutual
joint effects of all other SNPs in a multivariate sense.
In current literature, a few studies have already assessed
the performance of RF for detecting epistasis [32-35],
but they all focused on binary/case-control phenotype.
Additionally, current literature simply consideres two-way
interaction simulations and it is not clear whether or
not RF can perform well for more complex interactions.
Instead, we explored the performance of RF for quan-
titative/continuous traits and additionally increased the
complexity level by considering nonlinearity, correlation,
and more difficult interaction simultaneously.

Results and discussion

Power simulation

To illustrate the power of RF as a feature screening tool
for detecting correlative, nonlinear, and interactive effects,
we designed four different simulation settings to control
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linear vs nonlinear, constant vs functional, and additive
vs interactive features. We compare RF with five popular
feature screening tools, SIS [26], ISIS [26], CC-SIS [30],
ICC-SIS [30], and DC-SIS [27]. In order to make the com-
parisons fair, we keep some of their original simulation
settings the same, as well as design other settings different
to accommodate the emphasis of this study.

The sample size # is set to be 200. Let X = (xy, . .. ,xp)T
~ N(0, X) be the feature matrix with dimension p = 1000.
By controlling the component o;; = P =1,...,p
of covariance matrix X, the correlations among features
are introduced. All the values of 8s are zero, except the
truly causative features. Among the 1000 features, we set
the first five to be truly associated with phenotype and all
others be noise by letting

Y = fix1 + Baxa + B3xz + Paxaxs + €, 1)
for the linear and moderate interactive setting, and
Y = B1x? + Poxaxs + Baxaxs + €. )

for the nonlinear and strong interactive setting. The noise
€ is randomly generated from white noise N (0, 1).

Simulation 1

For Sim 1, we consider three linear and one
interactive terms with constant parameters. i.e.
Y is generated based on Eq. (1), p = 0.4, and Bs
are set to be 8 = (0.5, 0.8, 1, 2).

Simulation 2

For Sim 2, we consider one nonlinear and two
interactive terms with constant parameters. i.e.
Y is generated based on Eq. (2), p = 0.4, and Bs
are settobe 8 = (2, 3, 4).

Simulation 3

For Sim 3, we consider three linear and one
interactive terms with functional parameters. i.e.
Y is generated based on Eq. (1), p = 0.4, and Bs
are generated by 81 = 2+ (u + 13, 8, = 2”22—+3,
B3 = eu%, and B4 = cos (8—3‘2) + 2. In order to
introduce the correlation between each feature
and a covariate u, we generate (u*, X) ~
N@©,%*),here Z*is(p+1) x (p+1)
dimension using similar AR(1) structure as
above . Then we generate u by u = & (u*),
here ®(.) is the cumulative distribution function
(cdf) of the standard normal distribution. By the
theoretical properties of cdf, u follows a uniform
distribution U/(0, 1) and is correlated with X,
The functional parameter B(u) is useful to
explain personalized covariate effects that vary
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for different individuals due to different genetic
information and other factors [30].

Simulation 4

For Sim 4, we consider one nonlinear and two
interactive terms with functional parameters. i.e.
Y is generated based on Eq. (2), p = 0.4, and Bs

are generated by 1 = 2 + cos (W),

42
By = (4— 4u)6332+1 ,and B3 = u + 2. uand X
are generated using the same rule as Sim 3. This
setting has the hardest conditions that hinder
most approaches from detecting the truly
causative features.

The comparisons were assessed based on 100 simula-
tion replications. Three traditional criteria that frequently
appeared in feature screening literature [27], R, p, and M,
are used to compare the performances of six approaches.

® Rj, j=1,...,5,is defined as the average rank of each
causative feature x; for 100 replications. Since the
most important feature is ranked as top one, smaller
R for causative features means better performance.

® M=max Rj, j=1,...,5,is defined as the
minimum size of the candidate containing all five
causative features. Therefore, M close to five means
good performance. Like other feature screening
studies, we also compared the 5, 25, 50, 75, and 95 %
quantiles of M for the 100 replications. These
quantiles display how effective each approach is
during selection process.

e d is defined as the pre-specified number of
candidates that will be chosen as important. In real
life data, we do not know the minimum size
containing all causative features. Liu et al. [30]
suggested to use the multiplier of the integer part of
d= [n4/5/log (n4/5)]. i.e. for m = 200, d is suggested
to be 16, 32, and 48, and so on. We use the same
values to make the comparisons fair.

® pj,j=1,...,5,is defined as the percentage of each ¥;
being successfully selected within size d among 100
replications. The larger p;, the more accurate (higher
individual power).

® p, is defined as the percentage of all five causative
features being successfully selected within size d
among 100 replications. The larger p,, the more
accurate (higher overall power).

The comparative results of the constant parameters for
Sim 1 and Sim 2 are summarized in Tables 1, 2 and 3.
Table 1 reports the average rank of all five causative
features. For Sim 1, the first three features have linear
marginal effects but x4 and x5 have interactive effects.
The marginal effect of x; is designed to be smaller than
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Table 1 The average rank of each causative feature, Rj, for Simulation 1 &2
Sim1 Sim?2

METHOD R1 R2 R3 R4 R5 R1 R2 R3 R4 R5
SIS 12.21 1.56 1.51 143.14 322.16 359.17 360.41 398.89 34045 42830
ISIS 39.29 1.56 1.51 250.98 41243 43297 456.97 481.98 426.94 50213
CC-SIS 12.81 1.59 148 60.31 179.77 168.57 24227 242.85 25839 369.68
ICC-SIS 43.75 1.59 148 129.80 259.34 237.70 362.12 382.58 368.86 400.27
DC-SIS 5.95 1.59 148 7.93 19.58 3.51 21.07 32.86 744 14.79
RF 8.63 1.91 1.67 3.72 4.06 2.80 8.59 10.70 4.66 7.85

that of xy or x3 by setting f1 = 0.5, = 0.8, and
B3 = 1. For the simplest scenario (strong linear marginal
effects of xy and x3), all six approaches achieve remark-
able results with the average ranks Ry and Rj3 all less than
2. It means that all six feature screening approaches suc-
cessfully locate these two causative features as the top
two. For the weak linear marginal effect of x;, it seems
that the iterative approaches perform worse than their
corresponding original approaches, say ISIS 39.29 versus
SIS 12.21 and ICC-SIS 43.75 versus CC-SIS 12.81. In the
reports of Fan et al. and Liu et al., the iterative procedure
greatly improved the results compared to that of previ-
ous iterative procedures under all their reported scenarios
[26, 30]. Therefore, we still agree with the advantages of
iterative approaches, but maintain that our new findings
can help readers gain insight about the pitfalls and benefits
of each approach. The six approaches behave dramati-
cally different for the interactive terms x4 and x5. Both Ry
and R obtained from the first four approaches are very
large, which means that they rank hundreds of other can-
didates before these two causative features. Compared to
the 412.43 of ISIS and 179.77 of CC-SIS, RF achieves a
rank as small as 4.06. Observing the last row of Table 1, we
conclude that RF detects all five causative features using
the smallest number of candidates (less than 9 in average).
One more thing worth mentioning is that RF ranks the
features with strong interactive but weak marginal effects
(3.72 for x4 and 4.06 for x5) more important than fea-
tures with weak marginal effects (8.65 for x1). The overall
importance rank of RF combines all related effects rather
than simply considering marginal importance.

Table 2 The quantiles of M, for Simulation 1 & 2

For Sim 2, x; has a nonlinear effect and all other four
features have interactive effects. This setting is much more
difficult than Sim 1. As a result, all five ranks achieved
by the first four approaches dramatically increased from
decades in Sim 1 to hundreds in Sim 2. RF consistently
performs best for this harder condition by locating all five
causative features with complex structures within 11 can-
didates on average. Compared the results of Sim 1 and Sim
2 in Table 1, all six approaches get worse in harder con-
ditions, but the differences of RF is negligible, with 8.63
versus 10.70. It indicates that RF is more robust than the
other five approaches under harder conditions.

Table 2 reports five quantiles of M, the minimum size
of candidates containing all the five truly causative fea-
tures, among 100 simulation replicates. The first four
approaches have a 95% quantile as large as 958 for Sim
1 and 986 for Sim 2, meaning the detection of inter-
active terms fails. Among the 100 simulation replicates,
the five quantiles of RF are relatively unchanged. To be
more specific, 50 % of the replicates locate all five truly
causative features using 5 candidates (a perfect match),
75 % of the replicates locate all five truly causative features
by 8 candidates, and 95 % of the replicates locate truth by
17 candidates. Comparing the span from 5-95 % of these
six approaches, we conclude that RF is very effective and
accurate in locating important causative features.

Table 3 reports the powers achieved by three different
pre-specified sizes d = 16,32 and 48. For a small size
d = 16, RF already achieves a power as large as 93 %, while
the first four approaches only a power of 15%. When d
triples, the power of DC-SIS increases from 77-94 % but

Sim1 Sim2
METHOD 5% 25% 50% 75% 95 % 5% 25% 509% 75% 95 %
SIS 15.60 7225 339.50 646.00 887.75 257.25 681.00 817.50 888.00 970.20
ISIS 14.65 331.75 597.50 756.25 958.00 555.85 766.75 875.00 954.75 986.15
CC-SIS 7.90 3475 107.00 28850 703.80 131.85 357.25 605.50 81275 957.30
ICC-SIS 7.90 150.50 357.50 530.25 838.60 387.35 614.50 784.00 865.75 951.25
DC-SIS 5.00 6.00 8.00 16.25 55.20 7.00 16.50 31.00 66.50 152.60
RF 5.00 5.00 5.00 8.00 17.05 5.00 775 11.00 22.00 67.15
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Table 3 The overall and individual power, p, and p;, for Simulation 1 &2
Sim1 Sim2

d METHOD P pa p3 P4 ps Pa p1 pa p3 p4 ps Pa
SIS 0.97 0.97 0.97 048 0.09 0.08 0.09 0.04 0.01 0.01 0.01 0.00
ISIS 0.95 0.95 0.95 0.41 0.11 0.06 0.09 0.02 0.01 0.03 0.01 0.00
CC-SIS 0.95 0.95 0.95 0.61 0.17 0.15 034 0.13 0.09 0.07 0.01 0.00

16 ICC-SIS 091 091 091 0.52 0.16 0.11 0.32 0.09 0.09 0.04 0.01 0.00
DC-SIS 0.99 0.99 0.99 0.92 0.79 0.77 0.95 0.67 0.56 0.81 0.72 0.30
RF 0.93 0.93 0.93 0.93 0.93 0.93 0.99 0.88 0.84 0.95 0.89 0.67
SIS 0.97 0.97 0.97 0.55 0.18 0.14 0.09 0.05 0.04 0.03 0.02 0.00
ISIS 0.95 0.95 0.95 042 0.12 0.07 0.09 0.02 0.01 0.03 0.01 0.00
CC-SIS 0.95 0.95 0.95 0.67 0.29 0.22 0.34 0.17 0.15 0.08 0.04 0.00

32 ICC-SIS 091 091 091 0.55 0.22 0.14 0.32 0.09 0.10 0.05 0.01 0.00
DC-SIS 0.99 0.99 0.99 0.94 0.90 0.86 0.95 0.78 0.67 091 0.84 048
RF 0.93 0.93 0.93 093 093 093 0.99 0.94 0.92 097 0.95 0.82
SIS 097 0.97 0.97 0.57 0.20 0.16 0.09 0.05 0.04 0.03 0.02 0.00
ISIS 0.95 0.95 0.95 042 0.13 0.07 0.09 0.02 0.02 0.03 0.01 0.00
CC-SIS 0.95 0.95 0.95 0.74 0.35 0.30 0.34 0.19 0.17 0.08 0.05 0.00

48 ICC-SIS 091 091 091 0.60 0.24 0.16 032 0.10 0.11 0.07 0.03 0.00
DC-SIS 0.99 0.99 0.99 097 0.96 0.94 0.95 0.85 0.75 0.94 0.92 0.64
RF 0.93 0.93 0.93 093 093 093 0.99 0.96 0.95 0.99 0.95 0.88

the power of RF keeps all the same as 93 %. Additionally,
the five individual powers of RF do not differ much like
other approaches. These findings confirm that RF detects
all true causative features with high efficiency and high
accuracy for complex structures.

The comparative results of the functional parameters
for Sim 3 and Sim 4 are summarized in Tables 4, 5 and 6.
Closely inspecting the results of Tables 4, 5 and 6, we find
that the superiorities of RF over all other five approaches
are similar as summarized in Tables 1, 2 and 3. For Sim
3, the first three features have linear marginal effects
but x4 and x5 have interactive effect. The parameter Bs
are designed to be nonlinear and complex functions of a
covariate u. For Sim 4, x1 is in nonlinear form, and the

interactions are very strong because x; interacts with x3
and x4 interacts with x5. The Bs are designed to be more
complex functions of u. The six approaches all do well
for x; through x3 under Sim 3, but RF beats all other five
approaches under the remaining scenarios (see Tables 4, 5
and 6). DC-SIS has performed as better as RF in the first
two simulations but lost its power for Sim 3 and Sim 4.
Summarized from Tables 1, 2, 3, 4, 5 and 6, we conclude
that RF performs uniformly best among the six feature
screening approaches. In particular, RF stands out under
harder conditions. We know that Sim 2 and Sim 4 have
more harsh conditions than that of Sim 1 and Sim 3. How-
ever, if comparing the left panel and right panel of these
tables, we notice that while the majority of approaches get

Table 4 The average rank of each causative feature, R;, for Simulation 3 & 4

Sim3 Sim4
METHOD Ry Ry R3 R4 Rs R Ry R3 R4 Rs
SIS 1.00 2.00 3.00 160.15 379.58 262.87 369.88 392.07 363.33 494.10
ISIS 1.00 2.00 3.00 353.95 518.05 311.39 416.71 485.63 428.34 461.79
CC-SIs 1.00 2.00 3.00 140.46 376.82 26.58 15547 199.26 269.65 409.99
ICC-SIS 1.00 2.00 3.00 285.10 429.93 44.73 305.71 31691 34490 417.34
DC-SIS 1.00 2.01 299 111.32 228.75 1.35 16.93 27.88 3067 57.52
RF 1.00 2.01 314 59.87 107.06 1.25 6.58 13.66 14.98 26.18
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Table 5 The quantiles of M, for Simulation 3 & 4
Sim3 Sim4

METHOD 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
SIS 24.95 176.00 380.50 711.25 960.75 384.20 599.75 787.00 926.75 992.05
ISIS 22530 425.00 624.00 827.00 956.05 361.70 688.25 796.50 917.00 983.05
CC-SIS 31.90 165.50 393.00 662.75 883.60 43.70 330.00 623.00 811.50 959.55
ICC-SIS 9545 321.00 538.00 754.50 936.90 209.75 479.00 721.00 867.25 961.35
DC-SIS 15.00 57.50 205.50 445.25 692.85 10.00 29.00 61.50 115.00 22830
RF 7.00 14.50 65.00 189.25 603.05 6.00 12.00 19.50 42.75 149.75

caught by the traps of complexity, RF obtains either similar
or even better results.

Mice HDL GWAS project

Epidemiological studies have consistently shown that the
level of plasma high density lipoprotein (HDL) cholesterol
is negatively correlated with the risks of coronary artery
disease and gallstones [36—38]. Therefore, there has been
considerable interest in understanding genetic mecha-
nisms contributing to variations in HDL levels. Zhang
et al. published an open resource outbred mouse database
with 288 Naval Medical Research Institute (NMRI) mice
and 44,428 unique SNP genotypes (available at http://cgd.
jax.org/datasets/datasets.shtml) [39]. A total of 581,672

high density SNP were initially genotyped by the Novartis
Genomics Factory using the Mouse Diversity Genotyping
Array [40]. Quality control was made and only polymor-
phic SNPs with minor allele frequency greater than 2 %,
Hardy-Weinberg equilibrium x2 < 20, and missing val-
ues less than 40 % were retained [41]. Moreover, identical
SNPs within a 2 Mb interval were collapsed. This left
44,428 unique SNP genotypes for final analysis.

We implemented RF as the feature screening tool to this
data to compare our findings with the highly validated dis-
coveries in current literature. Figure 1 depicts the PVIM
for each SNP as a function of the SNP location (in Mb) for
19 chromosomes. The two dramatic peaks detected by RF
are located at Chrl at Mb173 and ChrS at Mb125, which

Table 6 The overall and individual power, p, and p;, for Simulation 3 & 4

Sim3 Sim4
d METHOD p1 p2 p3 P4 ps Pa 2 p2 p3 p4 ps Pa
SIS 1.00 1.00 1.00 041 0.03 0.02 022 0.08 0.02 0.03 0.03 0.00
ISIS 1.00 1.00 1.00 0.31 0.01 0.00 0.16 0.06 0.03 0.03 0.02 0.00
CC-SIS 1.00 1.00 1.00 037 0.04 0.03 0.86 0.30 0.22 0.06 0.07 0.00
16 ICC-SIS 1.00 1.00 1.00 0.27 0.02 0.02 0.83 0.24 0.16 0.06 0.05 0.00
DC-SIS 1.00 1.00 1.00 042 0.09 0.09 1.00 0.73 0.66 0.58 0.35 0.1
RF 1.00 1.00 1.00 0.60 037 032 1.00 0.94 0.83 0.79 0.69 049
SIS 1.00 1.00 1.00 0.48 0.08 0.06 0.22 0.08 0.04 0.04 0.03 0.00
ISIS 1.00 1.00 1.00 032 0.02 0.00 0.16 0.06 0.03 0.03 0.02 0.00
CC-SIS 1.00 1.00 1.00 0.50 0.08 0.06 0.86 0.40 031 0.14 0.1 0.02
32 ICC-SIS 1.00 1.00 1.00 030 0.05 0.02 0.83 0.27 0.18 0.12 0.08 0.00
DC-SIS 1.00 1.00 1.00 0.54 022 0.16 1.00 0.87 0.73 0.76 0.55 0.28
RF 1.00 1.00 1.00 0.66 047 037 1.00 0.97 093 0.88 0.80 0.66
SIS 1.00 1.00 1.00 0.54 0.12 0.08 0.22 0.08 0.04 0.04 0.04 0.00
ISIS 1.00 1.00 1.00 032 0.03 0.00 0.16 0.06 0.04 0.03 0.02 0.00
CC-SIS 1.00 1.00 1.00 0.54 0.13 0.08 0.86 0.46 033 0.20 0.12 0.04
48 ICC-SIS 1.00 1.00 1.00 033 0.08 0.02 0.83 0.28 0.19 0.14 0.10 0.01
DC-SIS 1.00 1.00 1.00 0.60 0.28 022 1.00 091 0.81 0.81 0.65 0.40
RF 1.00 1.00 1.00 0.71 0.58 041 1.00 0.99 0.94 0.94 0.88 0.77
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Fig. 1 PVIM based Manhattan Plot. Variable importance measure of SNPs obtained from RF for the NMRI mice HDL cholesterol GWA study. Each

are exactly the same as other reports for the same data,
but with a couple of advantages. First, type I error is not
a problem here. In traditional p-value based Manhattan
plots, there exist lots of signals surrounding the peaks and
these signals can be so dense and strong (slightly above the
threshold line) that it is hard to determine them as type I
error or not. However, we notice that the signals in Fig 1
are polar opposites, with only two peaks standing out and
all other SNPs shrinking towards zero. With such a clear
trend, no one will doubt whether all SNPs other than the
two peaks are type I error or truly causative genetic vari-
ants. Second, we achieve the same results more directly.
Zhang et al. identified three loci as significant, with two
loci on Chromosome 1 (Chr 1) and a single locus on Chro-
mosome 5 (Chr 5) (see Fig. 3 of [39]). However, after an
extensive comparisons of three analysis, linear trend test,
two way ANOVA, and EMMA, they claimed that the sig-
nificant findings in Mb182 of Chrl were spurious [39].
Third, we achieve the same results with much less com-
putational speed and burden. Zhang et al. made multiple
correction by using a simulation approach [42] as well as
the permutation approach [43], both of which are very
time consuming by generating thousands of replication
samples.

There is one difference in findings worth mentioning
here. Zhang et al. had the highest peak achieved at Chr
1 and the second highest peak at Chr 5. We found the
opposite. The p-values obtained from single-locus models
(linear trend test, two way ANOVA, and EMMA) all found
that the peak at Chr 1 has smaller p-values and hence
is more significant than that of Chr 5. However, single-
locus models only rank features by their marginal effects
without considering interactive, correlative, and polygenic
effects. On the contrary, RF gives a rank based on the over-
all importance, considering the individual effect of each
SNP as well as accounting for the mutual joint effects of
all other SNPs in a multivariate sense. Confirmed from
Tables 1, 2, 3, 4, 5 and 6 of the simulation results, we think
that RF ranks the peak of Chr 5 the highest because it is

more important in terms of its overall effects (marginal,
interactive, correlative, and polygenic effects) for the phe-
notype.

The two dramatic peaks detected by RF are also high-
lighted by a Nature Reviews Genetics report [44]. Chr5
locus at Mb125, the highest peak in Fig. 1, is located in
the same locus as QTL Hdlgl found by Su et al. and
Korstanje et al. [45, 46]. In addition, they conclude that
Scarbl, the well known gene involved in HDL metabolism,
is the causal gene underlying Hdlg1 by haplotype analysis,
gene sequencing, expression studies, and a spontaneous
mutation [47, 48]. Chr1 locus at Mb173, the second high-
est peak in Fig. 1, is the major determinant of HDL, which
has been detected as QTL Hdlg15 in inbred mouse strains
multiple times. Numerous mouse crosses have linked
HDL to this region, and Apoa2 has been identified as the
gene underlying this QTL [37, 38, 45].

The Manhattan plot using —log;,(p) as the rule to test
significance of each SNP has been widely used in almost
all current GWAS literature [16, 44, 49-52]. Instead, we
make Manhattan plot from PVIM as an alternative rule to
judge significance. A possible argument may come from
the threshold or cutoff level used to determine the signifi-
cance. If using p-value, the traditional determination is to
judge if — log,(p) passes the threshold of —l0g10(0.05/p).
However, the threshold is quite controversial in RF area.
There is no a clear solution for it yet. Chen et al. combined
the PVIM with permutation to compute the p-values so
that the threshold can be available [13]. However, they
did not support it using solid theoretical derivations and
simulation verifications.

Although the threshold of PVIM of RF is not feasi-
ble, it does not affect us to use PVIM based Manhattan
plot to draw importance conclusions given the following
concerns. 1) The threshold determination is not the key
interest of the feature screening approach. Like aforemen-
tioned five popular feature screening approaches, a pre-
specified number of candidates is picked and there is no
requirement of close parameter estimating or significance
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determining in feature screening. 2) Jiang et al. compared
RF with the p-values got from B statistic and reported
an extremely strong consistency between the p-value
and the importance measure. They claimed that larger
importance corresponds to smaller p-value of B statistic
[11, 33]. It indicated that the importance of RF can give
an alternative significance measure of association between
SNPs and phenotype. 3) Lunetta et al. found that RF
outperforms Fisher’s Exact test when interactive effects
exist, in terms of power and type I error [32]. It again
illustrated the comparable performance of PVIM with a
p-value approach. 4) The threshold of p-value approach is
obtained by multiple correction, which may not be reliable
for a ultra-high dimensional number of SNPs. For exam-
ple, Bonferroni correction was claimed to be too conser-
vative for large number of tests. The PVIM avoids the
multiple correction issue. 5) After having a closer investi-
gation on the Fig 1, we notice that the difference between
significance vs non-signifiance is very obvious. Therefore,
it is not necessary to use thresholds to determine signifi-
cance versus non-significance. The two polarized separate
is not an accidental because RF tends to have small type I
error without losing power.

Conclusion

In this article, we investigated the performance of a forest-
based feature screening approach for detecting epistatic,
correlative, and polygenic effects for large-scale genome
data. Besides the difficulties caused by high dimension,
the challenges of epistasis are tripled when hundreds
of thousands of SNPs are genotyped. The most popular
single-locus models are lack of power, mainly because they
ignore the complex mutual effects among SNPs. Extensive
studies have already been performed to handle epista-
sis, such as Brute-force search, exhaustive search, greedy
search, MDR, CPM, and so on. However they mainly tar-
get for manageable number of features and will lose power
for ultrahigh dimension of features. Marchini et al. pro-
posed to exhaustively search all possible 2-way interactive
combinations [2]. We agree that this exhaustive search
is able to detect all important 2-way interactions. How-
ever, it cannot track higher order interactions or more
complex structures. Additionally, the search load will be
astronomical if the dimension is ultrahigh.

Due to its high efficiency, easy implementation, and
great accuracy, feature screening has received much atten-
tion for reducing the number of features from huge
to moderate through importance rankings [26]. How-
ever, majority current feature screening approaches rank
the features by univariate measure and neglect the fea-
tures with weak marginal but complex overall effects.
By controlling the difficulty levels through four different
monte carlo simulation studies, we compared RF with
five other popular feature screening approaches. To make
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the comparisons consistent, we used the same criteria,
same simulation design, and same simulated data for all
six approaches. We conclude that the forest-based feature
screening performs nicely when nonlinear, interactive,
correlative, and other complex associations of response
and features exist. In addition, we noticed that the advan-
tages of RF are more manifested when the data conditions
are more harsh. We also examined a real mice HDL whole
genome data and further confirmed the advantages of RF
compared to other current studies for the same data. The
human data can be easily extended.

Methods

The purpose of feature screening is to recognize a small
set of features that are truly associated with response
from a big pool with ultrahigh dimension. By individually
defining a surrogate measure for underlying association
between response and each feature, feature screening
ranks features from the most important to the least
important.

Sure independence screening (SIS)

SIS ranks features based on componentwise regression or
correlation learning. Each feature is used independently to
decide how useful it is for predicting the response variable.
Letw = (wy,..., wp)T = XTy be a vector that is obtained
by component wise regression, where X is the standard-
ized feature matrix. Then, w is the measure of marginal
correlations of features with the response. The features
are sorted based on the componentwise magnitude of the
absolute value of w in a decreasing order [26].

Iterative sure independence screening (ISIS)

Fan and Lv pointed out the drawbacks of the SIS: an
important feature marginally uncorrelated but jointly cor-
related with the response can not be picked by SIS. The
spurious features not directly associate with the response
but in high correlation with a causative feature will likely
be selected by SIS [26]. The iterative SIS (ISIS) was pro-
posed to address these drawbacks. The idea of ISIS is
to iterate the SIS procedure conditional on previously
selected features. To be more specific, first select a small
subset k; of features, then regress the response over these
features. Treat the residuals as the new response and apply
the same method to the remaining p — k; features to pick
another small subset ky of features. Keep on the itera-
tion until the union of all steps achieve the prespecified
size [26].

Conditional correlation sure independence screening
(CC-sIs)

Consider how the case effect of response on a feature
is related with a covariate, i.e. the parameter 8 can be
a function of certain important covariate u. Now the
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conditional correlation between the response and each
feature is defined as

cov(x;j, ylu)
p(xj, ylu) = s j=1...,p.
Vecov(xj, xjlu) cov(y, y|u)
Define the marginal measure as w = (wy,..., WP)T =

E {,oz(xj, y|u)} and rank the importance of features based
on the estimated value of w in a decreasing order [30].

Iterative conditional correlation sure independence
screening (ICC-SIS)

Since CC-SIS is based on the top of SIS, it also exists
similar drawbacks of the SIS. In order to select the
marginally uncorrelated but jointly correlated features
and also reduce the effect of collinearity, ICC-SIS was
proposed. The idea of ICC-SIS is exactly same as ISIS,
but performs CC-SIS during each iteration of residual
fitting [30].

Distance correlation sure independence screening (DC-SIS)
The dependence strength between two random vectors
can be measured by the distance correlation (Dcorr) [29].
Szekely et al. showed that the Dcorr of two random vec-
tors equals zero if and only if these two random vectors
are independent. The distance covariance is defined as

deov (y,%)) = f by, (,5) — by (Db, (]2 Wi, )dltdls,

where ¢, (¢) and ¢s;(s) are the respective characteristic
functions of y and xj, and ¢4 (£, ) is the joint characteris-
tic function of (y, x;), and

-1
w(t,s) = {c} 111> lIsI*}

with ¢; = 7, and || -|| stands for the Euclidean norm. Then
the Dcorr is defined as

dcov(y, %))
Jdcov(y, y) deov(xj, %))

DC-SIS approach does not assume any parametric
model structure and works well for both linear and non-
linear associations. In addition, it works well for both cate-
gorical and continuous data without making assumptions
about the data type.

dcorr(y, xj) =

Random forest (RF)

RF has been widely used for modeling complex joint and
interactive associations between response and multiple
features [12, 32, 33, 53]. In particular, many nice proper-
ties of RF make it an extremely attractive tool for genome
studies: the data structure of response and features can
be a mixture of categorical and continuous variables;
it can nonparametrically incorporate complex nonlinear
associations between feature and response; it can implic-
itly incorporate joint and unknown complex interactions
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among a large number of features (higher orders or any
structure); it is able to handle big data with a large num-
ber of features but limited sample size; it can implicitly
accommodate highly correlated features; it is less prone
to over-fitting; it has good predictive performance even
when the majority of features are noise; it is invariant
to monotone transformations of the features; it is robust
to changes in its tuning parameters; it performs internal
estimation of error, so does not need to assess classifica-
tion performance by cross-validation, and hence greatly
reduces computational time [13, 32, 53, 54].

Using an ensemble method (also called committee
method), RF creates multiple classification and regres-
sion trees (CARTSs). The detailed process of RF can be
described in the following steps: Step 1, a bootstrap sam-
ple of size n is randomly drawn with replacement from
the original data. The remaining non-selected sample or
“Out-of-Bag" sample (OOB) is about 30 % on average. Step
2, a classification tree is grown on the bootstrap sam-
ple without trimming, by recursively splitting data into
distinct subsets with one parent node branched into two
child nodes. At each node, a fixed number of features is
randomly chosen without replacement from all original
features, with “mtry" pre-specifying how many features
are chosen. The best split is based on minimizing the
mean square prediction error. Step 3, previous two steps
are repeated to grow a pre-specified number of trees and
make a decision based on the majority vote of all trees
(classification) or average results over all trees (regres-
sion). Step 4, the prediction accuracy is computed using
OOB samples [53].

As an output of the RF, the permutation PVIM, con-
sidering the difference in prediction accuracy before and
after permuting the jth (j = 1,..., p) feature X; is defined
as

A \2 A \2
ZieBz (Yl - Ytl') - ZieBt (Yl - Y;;)

PVIM(X)) = B
t

Here B; is the OOB sample for tree ¢, t = 1,..., ntree.
Yy; is the predicted class for observation i got from tree
t before permuting X; and }A’;; is the predicted class after
permuting X;. The final importance measure is averaged
over all trees

ntree
PVIM(X)) = ) PVIM;(X;)/ntree.
t=1

If one feature is randomly permuted, its original associ-
ation with the response will be broken. Therefore, the idea
of PVIM is this: if one feature is an important factor for
response, the prediction accuracy should decrease sub-
stantially when using its permuted version and all other
non-permuted features to predict the OOB sample.
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According to the asymptotic theory of RF, RF is sparse
when sample size approaches to infinity with a fixed num-
ber of features p (i.e. only a small number of causal features
is truly associated with the response) [55], which matches
the goal of feature screening. The PVIM gives an impor-
tant measure for each feature, based on their level of
associations with response, and hence can be used for
feature screening [56]. The PVIM assess each variable’s
overall impacts by counting not only marginal effects, but
also all other complex correlative, interactive, and joint
effects, without requiring model structures or explicitly
putting interactive terms into the model [32]. The over-
all effects of each feature are assessed implicitly by the
multiple features in the same tree and also by the permut-
ing process when all other features are left unchanged but
kept in the same model. Therefore, the variable with weak
marginal but strong overall effects will be assigned a high
PVIM value [31, 32].

Availability of supporting data
The data set that we analyzed was freely download from
http://cgd.jax.org/datasets/datasets.html) [39].

Abbreviations

GWAS: Genome-wide association studies; RF: Random forest; PVIM:
Permutation variable importance measure (PVIM); SNPs: Single nucleotide
polymorphisms; MDR: Multifactor-dimensionality reduction; CPM:
Combinatorial partitioning method; SIS: Sure independence screening; ISIS:
Iterated sure independence screening; DC-SIS: Distance correlation sure
independence screening; CC-SIS: Conditional correlation sure independence
screening; ICC-SIS: CC-SIS: Iterated conditional correlation sure independence
screening; HDL: High density lipoprotein; NMRI: Naval Medical Research
Institute; Chr: Chromosome; Dcorr: Distance correlation; OOB: “Out-of-Bag"
sample; CART: Classification and regression trees.

Competing interests
The authors declare that there is no conflict of interest.

Authors’ contributions

GF conceived the research and wrote the manuscript; GW performed the
programming and data analysis; CC participated in idea discussions and
manuscript revisions; All authors have read and approved the final version of
the manuscript.

Acknowledgements
This work was supported by a grant from the National Science Foundation
(DMS-1413366) to GF (http://www.nsf.gov).

Received: 6 June 2015 Accepted: 13 November 2015
Published online: 23 December 2015

References

1. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease.
Science. 2008;322(5903):881-8.

2. MarchiniJ, Donnelly P, Cardon LR. Genome-wide strategies for detecting
multiple loci that influence complex diseases. Nat Genet. 2005;37(4):
413-7.

3. Balding DJ. A tutorial on statistical methods for population association
studies. Nat Rev Genet. 2006;7(10):781-91.

4. Yoo W, Ference BA, Cote ML, Schwartz A. A comparison of logistic
regression, logic regression, classification tree, and random forests to
identify effective gene-gene and gene-environmental interactions. Int J
Appl Sci Technol. 2012;2(7):268.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

Page 10 of 11

Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex
disease loci in whole-genome association studies. Nature.
2004;429(6990):446-52.

Schwender H, Bowers K, Fallin MD, Ruczinski I. Importance measures for
epistatic interactions in case-parent trios. Ann Hum Genet. 2011;75(1):
122-32.

Phillips PC. Epistasis—the essential role of gene interactions in the
structure and evolution of genetic systems. Nat Rev Genet. 2008;9(11):
855-67.

Moore JH. A global view of epistasis. Nat Genet. 2005;37(1):13-14.
Culverhouse R, Suarez BK, Lin J, Reich T. A perspective on epistasis:
limits of models displaying no main effect. Am J Hum Genet. 2002;70(2):
461-71.

Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex
traits. Science. 2002;298(5602):2345-349.

. Zhang 'V, Liu JS. Bayesian inference of epistatic interactions in

case-control studies. Nat Genet. 2007;39(9):1167-1173.

Cordell HJ. Detecting gene-gene interactions that underlie human
diseases. Nat Rev Genet. 2009;10(6):392-404.

Chen X, Liu CT, Zhang M, Zhang H. A forest-based approach to
identifying gene and gene-gene interactions. Proc Natl Acad Sci.
2007;104(49):19199-19203.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,
et al. Finding the missing heritability of complex diseases. Nature.
2009;461(7265):747-53.

Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing
heritability: Genetic interactions create phantom heritability. Proc Natl
Acad Sci. 2012;109(4):1193-1198.

Gibson G. Hints of hidden heritability in GWAS. Nat Genet. 2010;42(7):
558-560.

Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality
reduction for detecting gene-gene interactions in the presence of
genotyping error, missing data, phenocopy, and genetic heterogeneity.
Genet Epidemiol. 2003;24(2):150-7.

Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction
software for detecting gene-gene and gene-environment interactions.
Bioinformatics. 2003;19(3):376-82.

Hoh J, Wille A, Ott J. Trimming, weighting, and grouping snps in
human case-control association studies. Genome Res. 2001;11(12):
2115-119.

Nelson M, Kardia S, Ferrell R, Sing C. A combinatorial partitioning
method to identify multilocus genotypic partitions that predict
quantitative trait variation. Genome Res. 2001;11(3):458-70.

FanJ, HanF, Liu H. Challenges of big data analysis. Natl Sci Rev. 2014;1(2):
293-314.

FanJ, Samworth R, Wu Y. Ultrahigh dimensional feature selection:
beyond the linear model. J Mach Learn Res. 2009;10:2013-038.

FanJ, LiR. Statistical challenges with high dimensionality: Feature
selection in knowledge discovery. 2006. arXiv preprint math/0602133,
http://arxiv.org/abs/math/0602133.

Wang L, Zheng W, Zhao H, Deng M. Statistical analysis reveals
co-expression patterns of many pairs of genes in yeast are jointly
regulated by interacting loci. PLoS Genet. 2013;9(3):1003414.

He Q, Lin DY. A variable selection method for genome-wide association
studies. Bioinformatics. 2011;27(1):1-8.

FanJ, Lv J. Sure independence screening for ultrahigh dimensional
feature space. J R Stat Soc Ser B Stat Methodol. 2008;70(5):849-911.

LiR, Zhong W, Zhu L. Feature screening via distance correlation learning.
J Am Stat Assoc. 2012;107(499):1129-1139.

FanJ, Song R, et al. Sure independence screening in generalized linear
models with np-dimensionality. Ann Stat. 2010;38(6):3567-604.

Székely GJ, Rizzo ML, Bakirov NK. Measuring and testing dependence by
correlation of distances. Ann Stat. 2007;35(6):2769-794.

Liu J, Li R, Wu R. Feature selection for varying coefficient models with
ultrahigh-dimensional covariates. J Am Stat Assoc. 2014;109(505):266-74.

. Cook NR, Zee RY, Ridker PM. Tree and spline based association analysis of

gene-gene interaction models for ischemic stroke. Stat Med. 2004;23(9):
1439-1453.

Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening
large-scale association study data: exploiting interactions using random
forests. BMC Genet. 2004;5(1):32.


http://cgd.jax.org /datasets/datasets.html
http://www.nsf.gov
http://arxiv.org/abs/math/0602133

Wang et al. BVIC Genetics (2015) 16:148 Page 11 of 11

33, Jiang R, Tang W, Wu X, Fu W. A random forest approach to the
detection of epistatic interactions in case-control studies. BMC
Bioinforma. 2009;10(Suppl 1):65.

34. Winham SJ, Colby CL, Freimuth RR, Wang X, de Andrade M, Huebner M,
et al. Snp interaction detection with random forests in high-dimensional
genetic data. BMC Bioinforma. 2012;13(1):164.

35, Schwarz DF, Kénig IR, Ziegler A. On safari to random jungle: a fast
implementation of random forests for high-dimensional data.
Bioinformatics. 2010;26(14):1752-1758.

36. Wang X, Le Roy |, Nicodeme E, LiR, Wagner R, Petros C, et al. Using
advanced intercross lines for high-resolution mapping of HDL cholesterol
quantitative trait loci. Genome Res. 2003;13:1654-1664.

37. Wang X, Korstanje R, Higgins D, Beverly P. Haplotype analysis in multiple
crosses to identify a QTL gene. Genome Res. 2004;14:1767-1772.

38. SuZ, IshimoriN, Chen'Y, Leiter EH, Churchill GA, Paigen B, Stylianou IM.
Four additional mouse crosses improve the lipid QTL landscape and
identify Lipg as a QTL gene. J Lipid Res. 2009;50(10):2083-094.

39. Zhang W, Korstanje R, Thaisz J, Staedtler F, Harttman N, Xu L, et al.
Genome-wide association mapping of quantitative traits in outbred mice.
G3 (Bethesda). 2012;14:167-74.

40. YangH, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, etal. A
customized and versatile high-density genotyping array for the mouse.
Nat Methods. 2009;6(9):663-6.

41. Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, et al.
Commercially available outbred mice for genome-wide association
studies. PLoS Genet. 2010;6(9):e1001085.

42. Knijnenburg TA, Wessels LF, Reinders MJ, Shmulevich . Fewer
permutations, more accurate p-values. Bioinformatics. 2009;25(12):161-8.

43. Churchill GA, Doerge RW. Empirical threshold values for quantitative trait
mapping. Genetics. 1994;138:963-71.

44. FlintJ, Eskin E. Genome-wide association studies in mice. Nat Rev Genet.
2012;13(11):807-17.

45. SuZ, Wang X, Tsaih SW, Zhang A, Cox A, Sheehan S, Paigen B. Genetic
basis of HDL variation in 129/SvimJ and C57BL/6J mice: Importance of
testing candidate genes in targeted mutant mice. J Lipid Res. 2009;50(1):
116-25.

46. KorstanjeR, LiR, Howard T, Kelmenson P, Marshall J, Paige B, Churchill
G. Influence of sex and diet on quantitative trait loci for HDL cholesterol
levels in an SM/J by NZB/BINJ intercross population. J Lipid Res. 2004;45:
881-8.

47. Wergedal JE, Ackert-Bicknell CL, Beamer WG, Mohan S, Baylink DJ.
Mapping genetic loci that regulate lipid levels in a NZB/BTNJ*RF/J
intercross and a combined intercross involving NZB/B1NJ, RF/J, MRL/MpJ,
and SJL/J mouse strains. J Lipid Res. 2007;48:1724-1734.

48. SuZ, Leduc MS, Korstanje R, Paigen B. Untangling HDL quantitative trait
loci on mouse chromosome 5 and identifying ScarbT and Acads as the
underlying genes. J Lipid Res. 2010;51:2706-713.

49. Cha PC, Takahashi A, Hosono N, Low SK, Kamatani N, Kubo M, et al. A
genome-wide association study identifies three loci associated with
susceptibility to uterine fibroids. Nat Genet. 2011;43(5):447-50.

50. RipkeS, Sanders A, Kendler K, Levinson D, Sklar P, Holmans P, et al.
Genome-wide association study identifies five new schizophrenia loci.
Nat Genet. 2011;43(10):969-76.

51. Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, et al.
Common variants at 12q14 and 12q24 are associated with hippocampal

volume. Nat Genet. 2012;44(5):545-51.

52. Morrison AC, Voorman A, Johnson AD, Liu X, YuJ, Li A, etal. Whole Submit your next manuscript to BioMed Central
genome sequence-based analysis of a model complex trait, high density and we will he|p you at every step:
lipoprotein cholesterol. Nat Genet. 2013;45(8):899.

53. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. * We accept pre-submission inquiries

54. Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of « Our selector tool helps you to find the most relevant journal
random forests to a genome-wide association dataset: methodological _
considerations & new findings. BMC Genet. 2010;11(1):49. * We provide round the clock customer support

55. Biau G, Devroye L, Lugosi G. Consistency of random forests and other ¢ Convenient online submission
averaging classifiers. J Mach Learn Res. 2008;9:2015-033. o

Thorough peer review
56. QiY, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of different

biological data and computational classification methods for use in
protein interaction prediction. Proteins Struct Funct Bioinforma. * Maximum visibility for your research
2006;63(3):490-500.

¢ Inclusion in PubMed and all major indexing services

Submit your manuscript at B
www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results and discussion
	Power simulation
	Mice HDL GWAS project

	Conclusion
	Methods
	Sure independence screening (SIS)
	Iterative sure independence screening (ISIS)
	Conditional correlation sure independence screening (CC-SIS)
	Iterative conditional correlation sure independence screening (ICC-SIS)
	Distance correlation sure independence screening (DC-SIS)
	Random forest (RF)

	Availability of supporting data
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References



