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Abstract

Background: Asthma is a chronic disease of the airways and, despite the advances in the knowledge of associated
genetic regions in recent years, their mechanisms have yet to be explored. Several genome-wide association studies
have been carried out in recent years, but none of these have involved Latin American populations with a high
level of miscegenation, as is seen in the Brazilian population.

Methods: 1246 children were recruited from a longitudinal cohort study in Salvador, Brazil. Asthma symptoms were
identified in accordance with an International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire.
Following quality control, 1 877 526 autosomal SNPs were tested for association with childhood asthma symptoms
by logistic regression using an additive genetic model. We complemented the analysis with an estimate of the
phenotypic variance explained by common genetic variants. Replications were investigated in independent
Mexican and US Latino samples.

Results: Two chromosomal regions reached genome-wide significance level for childhood asthma symptoms: the
14q11 region flanking the DAD1 and OXA1L genes (rs1999071, MAF 0.32, OR 1.78, 95 % CI 1.45–2.18, p-value 2.83 × 10−8)
and 15q22 region flanking the FOXB1 gene (rs10519031, MAF 0.04, OR 3.0, 95 % CI 2.02–4.49, p-value 6.68 × 10−8 and
rs8029377, MAF 0.03, OR 2.49, 95 % CI 1.76–3.53, p-value 2.45 × 10−7). eQTL analysis suggests that rs1999071 regulates
the expression of OXA1L gene. However, the original findings were not replicated in the Mexican or US Latino samples.

Conclusions: We conclude that the 14q11 and 15q22 regions may be associated with asthma symptoms in childhood.
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Background
Asthma is classified as a complex and inflammatory dis-
ease of the respiratory tract with distinct phenotypes
and has a major impact on mortality, morbidity and
quality of life. However, the geographical area in which
it occurs should be taken into account in order to reflect
on its complexity. It has been occurring increasingly in
Latin America and a number of authors attribute a part

of this rise to the social and urban inequalities present
in these countries [1].
Recent reviews suggest that a significant amount of

childhood asthma could be attributed to genetic inherit-
ance [2]. A considerable number of studies on candidate
genes have been carried out in recent years, based on an
immunological understanding of asthma, in an attempt
to understand the genetic mechanisms of asthma, but
inconsistent replication suggested that these studies
mostly reported false-positive results [3]. A further
important observation is that the studies on association
between genetics and asthma were predominantly
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developed in populations of North American and Euro-
pean origin4, where the profile of disease differs from
the asthma established in Latin American populations.
The use of Genome-Wide Association Studies (GWAS)

as an alternative to candidate gene association analyses
has become possible with the development of genomic
analysis techniques. GWAS is a form of studying genetic
association in which hundreds of thousands of single
nucleotide polymorphisms (SNPs) are evaluated through
relations with a specific phenotype, without a previous
causal hypothesis [4].
The first GWAS of asthma identified various markers

in the 17q21 region, with common variants that appear
to contribute to a substantial proportion of asthma cases
in the group of children investigated [5]. Later studies
revealed that this region is important not only for
asthma in children and highlighted the importance of
other genes such as the chromosome 18 cluster IL1RL1/
IL18R1 in adults [6] and PDE11A in children [7], among
others. In turn, GWAS in non-white populations have
indicated different SNPs for asthma, such as ADRA1B,
RPPN, and DPP10 [8].
This study differs from others as it considers an ex-

tremely admixed population, which does not correspond
to the USA-Europe axis and seeks to understand the
genetic basis of asthma symptoms using genome-wide
techniques. The potential advantages of this approach
are higher frequencies of some disease SNPs, greater

extent of linkage disequilibrium due to admixture and
increased effect sizes for SNPs in the presence of certain
environmental risk factors, for example, changes in diet,
physical activity, exposure to allergens, indoor pollutants
and psychosocial factors [1].
This study aims to explore the effects of genetic markers

on asthma symptoms in a population of children living in
the city of Salvador, Brazil by means of a GWAS. We then
assessed the heritability in this population and investigated
the possible metabolic pathways associated with asthma
symptoms.

Results
After quality control, 1246 children aged 5 to 12 years
old were analysed. 673 of these were male and 573
female. From this total, 280 (22 %) presented asthma
symptoms which were defined as cases, 55.5 % male and
44.5 % female. The others 966 (78 %) without asthma
symptoms was defined as controls, 53.6 % male and
46.3 % female.

Association test
Following a PCA adjustment for ancestry (Additional
file 1: Figure S1), the genomic inflation factor (λ) was
1.04, indicating a low probability of false-positive
associations as a result of population structure. The
most strongly associated SNPs were found on chromo-
some 14 (region 14q11, Fig. 1), rs1999071 variant (OR:

Fig. 1 Manhattan plot for asthma symptoms in children, adjusted for population structure
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1.78; 95 % CI: 1.45–2.18; p-value: 2.83 × 10−8) in the inter-
genic region of 100 kb up-stream to the OXA1L (oxidase
(cytochrome c) assembly 1-like) gene. The second most
associated chromosome region was 15q21, specifically
SNPs rs10519031 (OR: 3.0; 95 % CI: 2.02–4.49; p-value:
6.68 × 10−8) and rs8029377 (OR: 2.49; 95 % CI: 1.76–3.53;
p-value: 2.45 × 10−7), both in an intergenic region. Table 1
lists the 20 most significant SNPs (for further infor-
mation, see Additional file 1: Table S2). The quantile-
quantile plot revealed some deviations in the tail, but
not systematic deviation, indicating that SNPs which
are genuinely associated with asthma symptoms could
be present (Fig. 2). Following imputation for chromo-
somes 14 and 15, we observed that the associated
SNPs with greater statistical significance remained
and were identified as belonging to the regions flank-
ing the DAD1 and OXA1L genes in chromosome
14q11 and FOXB1 in chromosome 15q21 (Figs. 3 and
4).
We examined whether rs1999071 is associated with

differential expression of DAD1 and OXA1L in chromo-
some 14 using the GTEx browser [9] in lung tissue and
transformed fibroblast cells (Fig. 5). We found differen-
tial expression of OXA1L in lung tissue (GTEX p-value:
0.003).
For replication in GALA II and MCCAS, we provided

a list of 75 SNPs, in which 25 were the most associated

in the initial analysis, to which were added the most
associated SNPs in the 14q11 and 15q21 regions after
imputation (25 SNPs for each chromosome). In GALA
II, 65 SNPs were available (Additional file 1: Table S3),
but only one SNP in chromosome 10, rs10159952, was
replicated (OR: 1.37; 95 % CI: 1.07–1.76; p-value: 0.01).
This SNP is an intronic variant in the C10orf11 gene
and remained associated after combined analysis (OR

combined: 1.63; 95 % CI: 1.35–1.97; p-value combined:
4.03 × 10−07). In MCCAS, the data were available on 14
SNPs overall, however no SNP had a P value < 0.05
(Additional file 1: Table S3), and the combined p-value
of rs10159962 was 3.25 × 10−06.

The proportion of phenotypic variance explained by the
genome
It is observed in Table 2 that 70 % of the total pheno-
typic variation (liability for asthma symptoms) was
explained by the genotyped SNPs (p-value: 0.001). This
variance dropped to 69 % with the removal of the 20
most associated SNPs and to 12 % in an analysis of the
20 most associated SNPs; however the standard errors
on each of these values are large. In the analysis sepa-
rated by chromosome, chromosomes 4, 7, 10, 13 and 15
were those which most explained asthma symptoms
(Additional file 1: Figure S2).

Table 1 The 20 SNPs which are most associated with asthma, corrected by the first three principal components for ancestry

Rank Chromosome SNP Position (bp) Risk Allele MAF Gene Odds ratio IC (95 %) p

1 14 rs1999071 23129207 C 0.32 Intergenic 1.78 (1.45 – 2.18) 2.834 × 10−08

2 15 rs10519031 60183005 C 0.04 Intergenic 3.01 (2.02 – 4.49) 6.676 × 10−08

3 15 rs8029377 60191985 C 0.06 Intergenic 2.49 (1.76 – 3.53) 2.454 × 10−07

4 3 rs77165709 159452876 T 0.08 IQCJ-SCHIP1 2.27 (1.66 – 3.18) 3.045 × 10−07

5 10 rs10159952 77562470 A 0.09 C10orf11 2.04 (1.53 – 2.72) 1.016 × 10−06

6 9 rs1329568 37037976 T 0.11 LOC100130458 1.93 (1.47 – 2.54) 2.02 × 10−06

7 7 rs1425883 49754984 T 0.36 Intergenic 0.60 (0.49 – 0.74) 2.037 × 10−06

8 7 rs1543902 49754752 G 0.36 Intergenic 0.60 (0.49 – 0.74) 2.164 × 10−06

9 18 rs76227669 10787366 T 0.02 PIEZO2 4.06 (2.24 – 7.36) 3.881 × 10−06

10 9 rs4878674 37036329 T 0.12 Intergenic 1.90 (1.45 – 2.49) 4.027 × 10−06

11 10 rs1244495 7881339 G 0.38 TAF3 0.61 (0.50 – 0.75) 4.169 × 10−06

12 1 rs269330 68548590 T 0.16 GNG12-AS1 1.75 (1.38 – 2.22) 4.669 × 10−06

13 7 rs10268364 28708465 C 0.36 CREB5 1.59 (1.30 – 1.94) 4.671 × 10−06

14 7 rs41335 28704468 C 0.49 CREB6 0.64 (0.52 – 0.77) 4.793 × 10−06

15 4 rs72998173 173715118 G 0.14 GALNTL6 1.76 (1.38 – 2.24) 4.848 × 10−06

16 3 rs4373023 34077223 T 0.43 Intergenic 1.57 (1.29 – 1.91) 4.977 × 10−06

17 9 rs1329567 37038326 A 0.09 LOC100130458 1.97 (1.47 – 2.64) 5.46 × 10−06

18 9 rs2381598 37041246 C 0.09 Intergenic 1.97 (1.47 – 2.64) 5.474 × 10−06

19 15 rs12901887 56941976 G 0.23 ZNF280D 0.56 (0.43 – 0.72) 6.224 × 10−06

20 1 rs79530846 171950308 T 0.03 vDNM3 3.08 (1.88 – 5.03) 7.542 × 10−06
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Enrichment analysis
This analysis is based on prior knowledge of the genes
involved in known biological pathways, testing the asso-
ciation between them with the phenotype of interest. All
of the metabolic pathways were examined, with 20 pre-
senting empirical p-values of less than 0.05 and the
haematopoiesis pathway which had an empirical p-value
of less than 10−3: (GO:0030097, p-empirical: 7.9 × 10−4).
However, these pathways lost statistical significance
following multiple test correction (Table 3).

Discussion
We have carried out a GWA study of asthma symptoms
in 1246 children in the population of Salvador, Brazil.
The 14q11 and 15q22 regions were associated with
asthma symptoms.
The 14q11 region has already been reported in different

GWA studies associated with dental development [10],
obesity [11], narcolepsy [12] and cancer [13]. However,
this association in asthma studies had not yet been re-
ported. We analysed the LD between rs1999071 and each
of the SNPs on 14q11 region presented in those publica-
tions, but none of them were in LD (r2 ≥ 0.80) with
rs1999071 in our population. If rs1999071 is involved in
asthma pathogenesis, then it is unlikely to represent a
shared aetiology with the conditions above.
Studies on candidate genes in the 14q11 region found

association with SNPs in genes involved in the modulation

of inflammatory and immunological responses. The LTB4
(leukotriene beta 4 receptor) gene was associated to
asthma [14] and TRA (T cell alpha receptor) associated
with a skin prick test (SPT) in a linkage study in a group
of asthmatic families [15]. Furthermore, based on de-
scribed biological functions, it is reasonable to suppose
that genes which are potentially associated with asthma
symptoms may be located in this region, with the example
of SLC7A7, MMP14 and DAD1. The SLC7A7 gene is in-
volved in the macrophage differentiation process [16] and
its involvement in asthma pathogenesis has been de-
scribed [17]. MMP14 is involved with remodelling the
extracellular matrix [18] and, specifically, the remodelling
of the airway epithelium [19]. DAD1 is active in the apop-
tosis regulation process [20] and its failure in this process
may lead to increased lymphocytes in asthma patients
[21]. The variant which was most associated in this study,
rs1999071, is located in the region flanking the OXA1L
gene that encodes a component of the evolutionarily con-
served Oxa1/Alb3/YidC protein family, which is involved
in the biogenesis of membrane proteins of mitochondria,
chloroplasts and bacteria [22]. Although asthma is not
considered a mitochondrial syndrome, there is a consider-
able overlap between asthma pathophysiology and mito-
chondrial biology in aspects of apoptosis, oxidative stress
and homeostasis of calcium ions [23]. Alterations to oxi-
dative stress may lead to developing asthma by activating
pro-inflammatory pathways [24]. Alteration of the Ca++

Fig. 2 QQ-plot for childhood asthma symptoms, adjusted for population structure
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homeostasis in the bronchial smooth muscle cells in-
creases mitochondrial biogenesis, cellular proliferation
and, consequently, remodelling of the airways in asthmatic
patients [25].
The second most associated region in this study was

15q21, the rs10519031 flanks the FOXB1 gene which be-
longs to the family of FOX (forkhead box) transcription
factors, with more than 40 members expressed in mam-
mals. Mutations in this group of genes have important
effects on human diseases [26]. However, the FOXB1
protein has only been described as being involved in
regulating embryonic development [27] until this time.
The 15q21 has already been described in GWA of

asthma, with the most associated genes being RORA,
SMAD3 and SCG3 [28]. RORA is a transcription factor
which belongs to the nuclear hormone receptor (NR1)
superfamily and links as monomers to specific hormonal
response elements in the DNA [29]. It may increase or
restrain the transcription of target genes [30] and is

differentially expressed during development of the hu-
man lung. SMAD3 (SMAD protein family member 3) is a
(later) downstream transcription factor of TGFβ and is
important for metabolic pathways of regulatory T cells
and TH17 [31] cells. It is related to the metabolic pathway
of regulatory T cells which forms part of the common [32]
process of negative regulation of TH1 and TH2 [33].
SCG3 (secretogranin 3) encodes a protein member of the
neuroendocrine secretory protein family, chromogranin/
secretogranin, which are ubiquitous protein regulators of
protein secretion [34]. However, there has been little
research on its functions.
An important disagreement between our study and pre-

vious GWAs findings was the absence of association in
the 17q21 region [5] with asthma symptoms. However,
the power of our study was limited by the sample size of
280 cases and 966 controls, and we may simply have been
underpowered to detect previously known SNPs. Our lim-
ited sample size probably accounts also for the high effect

Fig. 3 Regional plot of chromosome 14, which is the region most associated with childhood asthma symptoms
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sizes of the associated SNPs in our study, ranging from
1.78 to 3.0; while our observed associations were genome-
wide significant, they were probably biased upwards by
the “winner’s curse” effect [35] . Independent replication is
needed to confirm these associations and accurately
estimate their effect sizes. We did not achieve com-
pelling replication in Mexican and Latino United
States cohorts, but this could have been affected by
differences in phenotype definition, sample ancestry,
available SNPs and sample size.
For the majority of complex diseases, the associated

SNPs from genome-wide association studies (GWAs)
only explain a small fraction of heritability. The esti-
mate of the variance explained in liability to asthma
symptoms was 70 % in this article, which is a high
but also consistent with previous findings in family
studies [36] and in cohort studies [37]. These results
reinforce the idea that asthma is a complex disease
with polygenic inheritance in which individually

different genes and their polymorphisms contribute
very little to the outcome, but there is a major effect
when they are analysed together. Analysis with GCTA ex-
plained a substantial proportion of the “missing heritabil-
ity” and provided evidence that the additive genetic
influence of various common SNPs is a powerful deter-
minant of childhood asthma.
It is important to understand that genome-wide

studies have analytical limitations, such as not detect-
ing rare variants. Therefore, other complementary ap-
proaches are needed such as resequencing, gene
expression analysis and replication in other popula-
tions. The main limitation of this study is related to
power, as the number of cases was relatively small in
this prospective cohort, and does not, for example,
allow us to differentiate atopic from non-atopic
asthma. The sample used was considered adequate for
classic epidemiological studies but genome-wide or
enrichment studies require a larger sample population

Fig. 4 Regional plot of chromosome 15, which is the second region most associated with childhood asthma symptoms
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than in classical analyses and it is possible that no
metabolic pathway associated to asthma symptoms
was found as a result.

Conclusions
Finally, it is concluded that the 14q11 and 15q21 regions
may be associated with asthma symptoms in childhood in
the population studied. In addition, eQTL analysis sug-
gests that rs1999071 at 14q21, associated with asthma in
this study, regulates the expression of OXA1L in lung tis-
sue. But these regions explain less than 12 % of variation

Fig. 5 Expression of genes OXA1L and DAD1, that flanking the rs1999071, in chromosome 14

Table 2 Genomic variance analysis of asthma symptomsa

Vg/Vp Standard error P-value

All of the SNPs 0.70 0.25 0.001

All of the SNPs, except for the 20
most associated with the outcome.

0.69 0.25 0.001

Only the 20 SNPs most associated
to the GWA study

0.12 0.04 0

aCorrected by sex and the first three principal components of ancestry
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in liability to this phenotype. A total of 70 % of variation
in liability may be explained by common genetic variants,
confirming the polygenic nature of asthma.

Methods
Study design and characteristics of the population
The data analysed here on asthma and genetic markers
were collected in 2 005, as part of the Social Changes,
Asthma and Allergy in Latin America (SCAALA) project.
The SCAALA composes the EPIGEN-Brazil initiative, it is
based on three well-defined ongoing population-based
cohorts from Brazil’s regions [38]. The design of the
original cohort and data collection for asthma are de-
scribed in detail elsewhere [39]. The sample in this
analysis comprises 1 307 children, between 5 and
12 years old, who are resident in the city of Salvador,
State of Bahia, Brazil. The city has more than 2.6 mil-
lion inhabitants and 80 % of the population declare
themselves as black or of mixed race [40].

Data collection
A questionnaire based on the second phase of the
ISAAC [41] study was used, with questions on asthma
symptoms which had been translated into Portuguese
and applied by appropriately trained researchers during
home visits. The interviews were carried out with the
children’s mother, father or caregiver, provided that the

person providing the information knew how to describe
the possible presence of signs and symptoms compatible
with asthma. Written informed consent was obtained
from the legal guardian of each subject. The project was
approved by the ethics committees at the Federal
University of Bahia (register 003-05/CEP-ISC) and Na-
tional Council for Ethics in Research (CONEP, resolution
number 15 895/2011).

Definition of asthma symptoms
The children were classified as asthmatic when the par-
ents or caregiver reported wheezing in the 12 months
prior to applying the questionnaire associated with any
one of the following situations: diagnosis of asthma by a
doctor at any time in their lives, wheezing with exercise in
the last 12 months, four or more episodes of wheezing in
the 12 months or waking up at night due to wheezing
episodes in the last 12 months. This definition is more
specific than using only wheezing in the last 12 months,
more commonly reported by studies using the ISAAC
questionnaire. All the other children not fulfilling these
criteria were classified as non-asthmatic.

Genotyping and quality control
The genotyped SNPs were carried out with an Illumina
HumanOmni2.5-8v1 Kit BeadChip (Illumina, San Diego,
CA) commercial panel with 2 284 818 SNPs. One
individual was excluded from the analysis due to

Table 3 Metabolic pathways associated with asthma symptoms suggested by enrichment analysis

Metabolic pathway Total number of
genes in the interval

N° of associated
genes in the interval

Genes p-empirical p-corrected

GO:0030097: haematopoiesis 52 7 CD164 (chr6), KIRREL3 (chr11),
BRCA2 (chr13), RPA1 (chr17),
BCL11A (chr2), PKNOX1 (chr21),
IKZF1 (chr7).

7.90 × 10−04 0.76

GO:0070935: 3′-UTR-mediated
mRNA stabilization

3 2 TARDBP (chr1), ELAVL1 (chr19). 1.39 × 10−03 0.94

GO:001961: flagellum 1 4 CATSPERB (chr11), SPAG16 (chr2),
SPAG17 (chr1), CATSPER1 (chr14).

1.39 × 10−03 0.94

GO:0043922: negative
regulation by host of viral
transcription

4 2 POU2F3 (chr11),TARDBP (chr1). 1.79 × 10−03 0.94

GO:000369: DNA clamp loader
activity

5 2 RFC2 (chr7), RFC5 (chr12). 4.19 × 10−03 0.99

GO:0030212: hyaluronan
metabolic process

6 2 ITIH5 (chr10), ITIH2 (chr10). 4.19 × 10−03 0.99

GO:0050291: sphingosine
N-acyltransferase activity

5 2 LASS4 (chr19), LASS3 (chr15). 4.59 × 10−03 0.99

GO:0005663: DNA replication
factor C complex

6 2 RFC2 (chr7), RFC5 (chr12). 5.19 × 10−03 0.99

GO:004649:
S-adenosylhomocysteine
metabolic process

6 2 TPMT (chr6), DNMT3A (chr2). 5.19 × 10−03 0.99

GO:0006297: nucleotide-excision
repair, DNA gap filling

17 3 RPA1 (chr17), RFC5 (chr12), RFC2
(chr7).

5.79 × 10−03 1
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inconsistency between the sex registered and the genetic
sex, based on X chromosome SNPs. Sixty-one individ-
uals were removed from the sample due to the relation-
ship determined by kinship coefficients for each possible
pair of individuals. This method is implemented in the
REAP software (Relatedness Estimation in Admixed
Populations) [42]. We considered a pair of individuals as
related if the estimated kinship coefficient between them
was ≥0.1. This cut-off includes second- degree relatives
such as a person’s uncle/aunt, nephew/niece, grandparent/
grandchild or half- sibling, and any closer pair of relatives.
Quality control was carried out in stages (Additional

file 1: Table S1): a genotyping call rate of less than 0.98;
deviance in the Hardy-Weinberg equilibrium, with a
p-value of less than 10−4 and Minor Allele Frequency
(MAF) of less than 1 % [43].

Replication studies
Genes-environments & Admixture in Latino Americans study
(GALA II)
The Genes-environments & Admixture in Latino
Americans (GALA II) study is an ongoing multicenter
case–control study of asthma in Latino children and ado-
lescents, organized from the coordinating center based at
the University of California, San Francisco. It is comprised
of 3 774 participants (1 893 asthma cases and 1 881 con-
trols). GALA II recruited Latinos from urban regions in
the mainland United States (Chicago, IL; Bronx, NY;
Houston, TX; San Francisco Bay Area, CA) and Puerto
Rico, using a combination of community and clinic-based
recruitment. Subjects were eligible if they were 8–21 years
of age, self-identified all four grandparents as Latino, and
had <10 pack-years of smoking history. Asthma was
defined based on physician diagnosis and report of symp-
toms and medication use within the last two years prior to
the recruitment [44].

Mexico City Childhood Asthma Study (MCCAS)
This is a case-parent trio design where the population
from Mexico City Childhood Asthma Study (MCCAS)
has been previously described [45]. Genome wide associ-
ation data were available on 498 children between the
ages of 5–17 with asthma and their parents. Subjects
were recruited between June 1998 and November 2003
from a paediatric allergy specialty clinic at a public
hospital in central Mexico City. The childhood asthma
was diagnosed by allergists at the referral clinic, accord-
ing to the guidelines of the British Thoracic Society and
Scottish Intercollegiate Guidelines Network.

Statistical analysis
Genome-Wide Association
Logistic regression was used to examine the association
with asthma symptoms with an additive genetic model.

Conventionally, an association is considered suggestive
when the p-value is between 10−6 and 5 × 10−8 and
genome-wide significantly when the p-value is less than
5 × 10−8. Principal Component Analysis was carried out
and its first three components were used as covariates to
control confounding by population structure. In addition
the genomic inflation factor (λ) was calculated, in order
to visualise and avoid inflated test statistics in the results
[46]. Replication of the original finding was defined as a
p-value of less than 0.05 with an effect in the same
direction as in the GWAS. Fixed effects meta-analysis of
the SCAALA and GALA II studies was performed by
the GWAMA software [47]. Only p-values were available
from MCCAS so Fisher’s combined p-values were calcu-
lated for the meta-analysis of SCAALA, GALA II and
MCCAS.

SNP imputation
The genotypes were imputed, only in regions of interest,
using the IMPUTE2 package [48] on the public panel
from 1000 Genomes Project Phase I data “version 3”
(ALL.integrated_phase1_SHAPEIT_16-06-14.nomono.in
tegrated_phase1_v3.20101123.snps_indels_svs.genotypes.
nomono.haplotypes.gz) [49], which contained 1092 indi-
viduals of various ethnicities. Quality control was carried
out once more following imputation and the SNPs which
presented a MAF lower than 1 %, a deviance in the
Hardy-Weinberg equilibrium (p <10−4) or had a genotyp-
ing call rate of under 95 % were excluded.

Heritability estimate
The proportion of variance in liability for all of the SNPs
was estimated as (Vg/Vp) in which Vg is the variance
component attributable to genetic variation in the geno-
typed SNPs and Vp is the total phenotypic variance ob-
served. The GCTA software package was used, which
uses genetic variant data to estimate additive genetic
relationships (correlations) between distantly related in-
dividuals. The method treats the total effect of all of the
SNPs as a random effect in a Mixed Linear Model
(MLM) [50]. The variance of this random effect is an
estimate of Vg. This analysis was adjusted for sex and
first three principal components.

Enrichment analysis based on a defined set of genes
An aggregation analysis was carried out, based on link-
age disequilibrium in order to identify a list of genic
regions associated to the outcome (parameters for
PLINK = clump-p1 = 0.005; clump-p2 = 0.05; clump-r2 =
0.5; clump-kb = 250). Regions 20 kb up/downstream
from the initial and final transcription sites for 17 529
genes in the autosomal chromosomes were then defined,
according to the GRCh37/hg19 public database of cata-
logued genes. We performed enrichment analysis using
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the INRICH [51] program, comprising two stages. The
number of times that the genomic intervals, identified a
priori, including a set of predetermined genes is counted
in the first stage. A second stage was carried out to cor-
rect the false-positive rate, using a permutation proced-
ure based on 1000 repetitions in order to obtain the
empirical p-value, representing the proportion of times
that this genomic interval includes a specific gene.
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