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Abstract

In the analysis of current genomic data, application of machine learning and data mining techniques has become
more attractive given the rising complexity of the projects. As part of the Genetic Analysis Workshop 19, approaches
from this domain were explored, mostly motivated from two starting points. First, assuming an underlying structure in the
genomic data, data mining might identify this and thus improve downstream association analyses. Second, computational
methods for machine learning need to be developed further to efficiently deal with the current wealth of data.
In the course of discussing results and experiences from the machine learning and data mining approaches, six
common messages were extracted. These depict the current state of these approaches in the application to
complex genomic data. Although some challenges remain for future studies, important forward steps were taken
in the integration of different data types and the evaluation of the evidence. Mining the data for underlying
genetic or phenotypic structure and using this information in subsequent analyses proved to be extremely
helpful and is likely to become of even greater use with more complex data sets.

Background
The analysis of complex genomic data is a challenging
endeavor that may be tackled using machine learning
and data mining techniques. What these methods have
in common is that they search through data to look for
patterns. To help distinguish machine learning from data
mining within this, data mining has been described as
the process of extracting useful information from the
data. In contrast, machine learning can be viewed as the
set of methodological tools to do the extraction [1–3].
Thus, data mining includes selecting, preprocessing and
transforming data leading up to the actual application of
machine learning methods to build models, which are
then interpreted and evaluated. Therefore, machine

learning can be seen as 1 specific aspect of a larger class
of data mining techniques that focus on algorithms for
the automatic recognition of patterns in the data.
As part of the Genetic Analysis Workshop 19 (GAW19),

ten groups explored data mining and machine learning
techniques. Generally, there were mostly two starting
points that motivated these groups. First, many contribu-
tors were guided by the data mining idea and assumed that
there was an underlying structure in the genomic data
which, if identified, could improve inference. For this, the
different data types of the GAW data were exploited that
included several phenotypic facets, genetic markers,
and gene expression data among others. Because the
hypothesized structure is not easily accessible as a re-
sult of its complexity and limited sample sizes, it is
hoped that machine learning methods have the poten-
tial to better identify true signals in a lot of noise [4].
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The second major motivation was a lack of efficient im-
plementation of machine learning techniques, which was
noted as a key conclusion from GAW 15 [5]. Several con-
tributors explored novel approaches that more easily deal
with hundreds of thousands of genetic variants at a time
[6]. Therefore, the starting points from this group echoed
the suggestions by Clark et al [7] to focus first on data
mining tools to incorporate prior biological knowledge
into data analysis algorithms and, second, on the develop-
ment of computational methods for machine learning.
In the course of the discussion of our group’s results

and experiences, a number of messages were derived.
The following summary is structured around these mes-
sages. Supporting methods and results will be described
along the way.

Message #1: Using inherent information on data
structure helps subsequent analyses
In the spirit of the data mining definition given above, three
contributions in our group specifically looked for hidden
information in the data to use in further analyses. Of note,
this information can be either genetic or phenotypic.
In the contribution by Auerbach et al [8], ancestral in-

formation was extracted to potentially improve down-
stream association analysis with rare variants. They used
genome-wide association data from 1851 Mexican
Americans with 428,574 single nucleotide variants from
odd-numbered chromosomes. Systolic blood pressure
(SBP) was the dependent variable. Their method, termed
local ancestry summation partition approach (LA-SPA),
can be described in the following five steps: First, a prin-
cipal components analysis (PCA) is performed on the
genotypes, and the loading scores of the first component
are retained and interpreted to measure global ancestry.
Second, residuals are obtained from regressing SBP on
age, sex, medication, and the global ancestry measure
from the first step. Third, variants are grouped into
local, consecutive regions. Fourth, PCA in performed
again on the common variants of each local region. This
time, the loadings of the first 3 components are used to
classify the local ancestral origin of each region for every
subject. Specifically, a K-means clustering with K = 3 is
performed on the PCA components, classifying each re-
gion of every subject as corresponding to the 3 possible
ancestral origins (eg, Caucasian, African, and Native
American). Finally, association is analyzed between the
residuals from step 2 and the rare variants of each re-
gion using a modification of the summation partition ap-
proach (SPA) statistic [9]. While the original SPA
statistic collapses small groups of rare variants in order
to investigate each group’s association with the disease,
the following modification considers the association be-
tween disease and a region of rare variants, partitioned
by the local ancestry of region. The statistic is given by

T ¼
XK
k¼1

XJ

j¼1

n2j;k �Y j;k−�Y
� �2

, where nj,k is the total number

of rare variants in region j in the kth local ancestry, �Y j;k

is the mean phenotype of subjects with rare variants in
region j in the kth local ancestry group, and �Y is the
sample average. P values are obtained by permutation.
Using this method, Auerbach et al [8] tentatively identi-
fied associations in regions that would not have been de-
tected by the original SPA alone. Thus, this contribution
suggests that including ancestry information improves
power for an association test on rare variants.
Yang and Lin [6] also used aspects of the genetic data to

identify underlying structure. For this, they focused on
homozygosity disequilibrium, which is a pattern of sizable
runs of homozygosity that deviates from a random distri-
bution of homozygotes and heterozygotes in the genome
[10], and which can be estimated by the homozygosity in-
tensity. In their current contribution, the authors estimate
homozygosity intensity and then associate that informa-
tion with disease phenotypes. In regions with evidence for
association, they additionally test for association between
gene expression and homozygosity intensity. More specif-
ically, Yang and Lin [6] used the real whole genome se-
quencing data with 2,769,837 common single nucleotide
polymorphisms (SNPs) and 5,578,826 rare variants on the
odd-numbered autosomes on 959 related individuals from
20 large pedigrees to estimate the homozygosity intensity
for every individual. For this, sliding windows on a
chromosome were constructed by using the nearest-
neighbor method with a bandwidth of h(b), which corre-
sponds to the b% of variants on a chromosome that were
contained in every window. A double-weight local polyno-
mial model is set up of every individual in every window.
For every individual, an estimator of homozygosity inten-
sity in a window centered at physical position of x, given
by α0, is then derived by minimizing the locally weighted
least squares criterion E(x) with regard to α’s via

Ε xð Þ ¼
Xm

i¼1
K

xi−x
h bð Þ

� �
L xið ÞfIi−½α0 þ α1 xi−xð Þ

þ⋯þ αp xi−xð Þp�g2

;

where m is the number of variants on the specific
chromosome, p is the degree of the polynomial, K(.) is

the kernel weight function defined by K uð Þ ¼

1− uj j3� �3
; uj j < 1

0 otherwise

�
, L(.) is the locus weight function

L xið Þ ¼ 1; MAFi≥0:05
MAFi=0:05; 0≤MAFi < 0:05

�
, and I is an

indicator taking one if the specific variant is homozy-
gous and 0 otherwise. Thus, variants that are closer to x
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receive higher weight, and the locus weight is designed
to reduce the weights of common homozygotes of rare
variants, because they carry less homozygosity informa-
tion. The association of this homozygosity intensity with
SBP, diastolic blood pressure (DBP), and hypertension is
then modeled within every sliding window using gener-
alized estimating equations in 855 related individuals for
whom complete data was available. Finally, in those
regions identified in the previous step, generalized esti-
mating equations are again used to model the gene
expression from 20,634 transcripts as response with
association with homozygosity intensity. An implemen-
tation for these analyses is available on the website of
the authors (www.stat.sinica.edu.tw/hsinchou/genetics/
loh/LOHAS.htm). Applying this approach to the simula-
tion data shows good power and control of the type 1
error. The results by Yang and Lin [6] on the real data
demonstrate that the length of regions of homozygosity
density differs between individuals, but that there is familial
aggregation. The approach identifies interesting genetic
regions for DBP and hypertension. In conclusion, informa-
tion on the genetic structure as defined by homozygosity
intensity can be incorporated in the analysis of association
with clinical phenotypes and gene expression.
While Auerbach et al [8] and Yang and Lin [6] mine the

genetic data for underlying structure, Sun et al [11] exploit
additional multiphenotype information to empower subse-
quent association analyses with rare variants. Their basic
idea is to use quantitative blood pressure information to
cluster individuals without hypertension (controls), to
contrast every cluster with the case sample of hyperten-
sives, and, finally, to combine the association statistics into
a weighted sum test. This becomes feasible in the given
setting of an unbalanced case-control design, where con-
trols can be split into subgroups to test against the same
cases. In more detail, this contribution utilizes data of
42,825 SNPs on chromosome 3 after quality control in
1943 independent individuals with simulated phenotypes.
Using a 2-dimensional cluster method on SBP and DBP,
the control data is clustered into K groups with K being
determined by cross-validation, so that the resulting K
groups have different average levels of blood pressure. An
association statistic combining the comparison of every
cluster with the case group is defined by the clustering

sum test (CST) [11], where CST ¼
XK

i¼1
di
D Si , and di is

the average phenotypic distance between the ith control
group and the case group, D is the sum of di, and Si is the
value of a X2 test statistic contrasting the ith control sub-
group with the case group, where i = 1, …, K. Because the
case group has the highest level of blood pressure, one
hypothesis of CST is that the greater the difference
between case and subcontrol group in blood pressure
levels is, the more important is the genetic information
contained in this subgroup, so that a higher weight should
be assigned to that statistic value. Rare variants are

accommodated by collapsing them within specified win-
dows into pseudo markers, so that the CST is applied to
these pseudo markers. For comparison, the data are also
analyzed using the sequence kernel association test
(SKAT) [12]. Overall, the number of true positives is
higher for CST than SKAT, indicating a greater power of
the novel approach. Interestingly, the overlap of identified
regions is small, meaning that different signals are picked
up by CST and SKAT. It can, therefore, be concluded that
using further phenotype information can increase the like-
lihood of identifying true associations.
In conclusion, the examples from these three contribu-

tions show that different data structures may be used cre-
atively to mine a data set for further hidden information,
which ultimately may improve subsequent association
analyses. Further work is needed to further understand
which data structures will be most beneficial in this
endeavor.

Message #2: Exploiting the information from
different data types can be successful
For GAW19, we were provided with a realistically com-
plex data set that is comprised of different types of gen-
omic data. This obviously leads to the question of how
these different types can be combined in a useful way. A
recent review of statistical methods of genomic data in-
tegration is available [13]. In our group, two applications
used the information from SNPs and gene expression
data for association approaches.
As described above, the contribution by Yang and Lin

[6] used genotype data in the first step to estimate
homozygosity intensity. This was then associated with
the clinical phenotypes, and those regions with identified
association were finally analyzed for association with
gene expression.
In a more direct way, Held et al [14] built support vec-

tor machine models to predict disease status from genes
that simultaneously collapse genotype variants and use
gene expression effects. Specifically, based on 637 indi-
viduals with a simulated hypertension phenotype, some
or all of the first 150 simulated data sets were used for a
selection of interesting genes (training), and three from
the remaining 50 simulated data sets were used for clas-
sification (testing). For the gene selection step, logistic
regression models were fit for every gene as an extension
of a previous model by Huang et al [15] with

logit P Y ¼ 1ð Þð Þ ¼ Ageþ Sexþ Smokeþ Age⋅Sex
þ Pedigreeþ G þ I þ G⋅I:

In this model, Y indicates the hypertension status, Sex
and Smoke are indicator variables for the proband’s sex
and smoking status, Age is a continuous measure of the
proband’s age, Pedigree indicates the proband’s family, G
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is a continuous measure of the specific gene expression,
and I is an indicator for the presence of any rare alleles at
any location in the same specific gene. Thus, for rare vari-
ants, this model includes a collapsing that is similar to the
original combined multivariate and collapsing (CMC)
[16]. Based on each model’s p value for testing the null hy-
pothesis that none of the explanatory variables in the
model have an effect, interesting genes are then forwarded
to the next step of classification where 1 of 3 procedures
is applied. In the first, the same logistic regression model
as before is applied to the classification data set for the se-
lected genes with separate terms for every gene. In the
second and third procedures, support vector machines
with radial and linear kernels are used for classification
using the same model as in the first step, with additional
terms included for the top 1 to 50 genes identified in the
first step. The required hyperparameters are derived from
cross-validation. Held et al [14] find that the predictive
performance is slightly higher for a support vector ma-
chine with a linear kernel than for the other methods.
With logistic regression and use of a radial kernel, the per-
formance decreases with a greater number of genes.
Whether including gene expression information is benefi-
cial for the performance is as yet unclear.
Taken together, these examples show that it is methodo-

logically feasible to exploit genotype and gene expression
data either in different steps of the procedure or simultan-
eously. To what extent these approaches improve results
will have to be shown in further experiments.
Another challenge, one that is related to the combin-

ation of different data structures, is how to incorporate
rare variants effectively when applying machine learning
methods. One possibility considered by Auerbach et al
[8] is to use information from rare and common variants
for different tasks. As described in the previous section,
they presume that rare variants contain additional
disease-related information that is not present in com-
mon variants. Thus, based on common variants, the
local ancestry is constructed, and rare variants are then
tested for association with the clinical phenotypes. A
more general idea was followed by Yang and Lin [6],
who use all variants to estimate homozygosity intensity,
but common and rare variants receive a different weight
to take into account that rare variants carry less homo-
zygosity information.
In a most general approach, rare variants are somehow

collapsed into some kind of pseudo markers, as seen in
the contributions by Sun et al [11] or Held et al [14]. This
could easily be incorporated in other machine learning ap-
proaches as well.
Thus, rare variants can be dealt with in machine learning

algorithms. Application of collapsing ideas is straightfor-
ward but will face similar limitations as in the context of
more classical statistical approaches [17]. Furthermore,

even though integration of additional sources of data is a
promising approach, and machine learning techniques ap-
pear adaptable to these settings, ultimate conclusions
about which data sources are the best candidates for com-
bination, and best practices about how to combine data
are still needed.

Message #3: Evaluating the evidence from
machine learning methods is not straightforward
but is possible
In large-scale genomic studies as provided for GAW, we
typically analyze the data with two different objectives in
mind, which have been contrasted before [5]. The first
objective is to identify genetic variants that may play a
role, either alone or in concert, in disease development
or progression. In contrast, the second objective is to
classify or predict disease development or progression
based on genetic variants, again either alone or in com-
bination [18]. To meet the latter objective, we have to
consider current guidelines for the evaluation of gen-
omic tests like the ACCE framework (www.cdc.gov/
genomics/gtesting/ACCE/), which contains criteria for
analytical validity, clinical validity, clinical utility, as
well as ethical, social, and legal implications [19]. When
focusing on the clinical validity, that is, whether a gen-
etic test is able to predict or identify a disease of inter-
est, both the strength of the association and diagnostic
or prognostic value have to be measured. As an ex-
ample for this, the area under the curve was reported
in the contribution by Held et al [14].
Most of the contributions of this group, however,

followed the first objective of gene identification, for
which measures for the strength of evidence are re-
quired. Traditionally, p values undertake this task. One
approach interprets the p value as a probability and
compares it to an a priori specified significance level,
possibly taking multiple testing into account. Based on
that comparison, a conclusion regarding the null and
alternative hypotheses is reached [20]. This inferential
approach is of immediate importance for instance in
Phase III clinical trials for regulatory approval, where the
decision based on the p value may lead to a different ac-
tion in treating patients, and clear inference about a
treatment effect in a defined population is required [21].
In the context of large-scale genomic data, however, in-
stead of methods for inference, we need to rely on
methods developed for discovery. Therefore, we use the
classical definition of inductive inference by Fisher that
allows p values to be directly interpreted as measures of
evidential strength [22]. Thus, a prespecified significance
threshold is not important, and p values can be ranked
to yield the most promising variants, which may then be
taken forward to further validation, functional studies,
etc. This approach is also backed up by results from
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Gorlov et al [23], who showed a linear relationship be-
tween the − log p value in a discovery study and the
chance for reproducibility of the result.
When applying machine learning methods, p values are

not automatically produced. Oftentimes, though, they may
be obtained by permutation. However, this can obviously
be time-consuming (see Message #4 below). Another pos-
sibility is to utilize alternative measures such as variable
importance in random forests [5, 24] or its derivative
r2VIM as in the contribution by Holzinger et al [4]. This
allows for a more efficient evaluation of evidence by inte-
grating different variable selection parameters. Specifically,
Holzinger et al [4] used the whole-exome sequencing data
from 1937 unrelated individuals with the simulated SBP
and Q1 phenotype. After quality control, 353,103 variants
were available. As a benchmark, they derived Bonferroni
corrected p values from linear regression models, includ-
ing main effect terms for the variant, medication, smok-
ing, sex, age, and the top 10 principal components. This
was contrasted with random forests as implemented in
Random Jungle [25, 26] using the r2VIM algorithm that
combines the following three components: First, the raw
variable importance (VIM) is calculated as the percentage
change in mean squared error before and after random
variable permutation. Second, the absolute value of the
lowest VIM gives an estimate of the null variance and can
thus be used as a threshold by selecting only those vari-
ables with VIMs greater than this null variance [27]. Here,
this estimate is multiplied by a prespecified factor to yield
more stringent thresholds. Third, random forests is run
several times to select variables that are greater than the
specified threshold factor across runs, which is termed
recurrency. The resulting comparison between linear re-
gression and r2VIM revealed similar true-positive and
false-positive frequencies. Thus, it appears that r2VIM is a
valid alternative approach when using random forests.
However, it is limited by the computational power, as we
will discuss in the next section.

Message #4: Computational limits are still an
issue
Computational efficiency was one of the original motiva-
tions for applying machine learning and data mining
methods. Accordingly, one of the overall messages from
our group was that, in practical applications, computa-
tional limits are still an issue. This firstly pertains to the
analyses themselves, as made explicit in the work by Hol-
zinger et al [4], who found that running random forests in
large data sets required a large number of processors pro-
vided with a high amount of memory, thus clearly limiting
the possibilities for application. In a similar way, other
participants restricted their analyses as a result of compu-
tational demands in applying artificial neural networks
(Legault et al, personal communication). Still others

specifically focused on the increase in computational effi-
ciency. Here, Yang and Lin [6] further developed their pre-
vious method of estimating homozygosity intensity [28] in
that they now circumvent the need for imputing the com-
mon homozygote in rare variants, thus decreasing compu-
tation time.
As noted previously, computational limits can easily

be reached when analyzing interactions between markers
[29], because as the number of SNPs increases the num-
ber of potential interactions increases exponentially. One
possible way to deal with this is to filter promising SNPs
before analyzing interactions, an approach which was in-
vestigated by Gola and König [30]. Genotype data on
46,746 SNPs in 1829 unrelated individuals after quality
control was used with the real phenotypes of SBP, DBP,
and hypertension. To select interesting SNPs for later
analysis, a collection of filter methods (eg, Relief [31]
and subsequent developments) was applied in the first
step. These approaches are based on nearest-neighbor
techniques by weighting a SNP according to whether the
nearest neighbor of the same affection status and the
nearest neighbor of the other affection status have the
same or different genotypes. These filters are implemented
in the multifactor dimensionality reduction (MDR) soft-
ware package (http://sourceforge.net/projects/mdr/) and
can be used on binary phenotypes; in this contribution,
they were applied using hypertension as outcome. In
the second step, Gola and König [30] then analyzed the
selected variants using model-based MDR (MB-MDR)
[32] for main effects, interaction with age, interaction
with sex, and 2-way SNP-SNP interactions. For com-
parison, MB-MDR was analogously applied to all unse-
lected SNPs with the phenotypes hypertension, SBP
and DBP. Multiple-corrected p values were derived by
permutation. As a result, interesting nonlinear inter-
action effects were identified when using the unselected
SNP set. However, generally, the filtered SNPs did not
match with interesting SNPs from the entire set ana-
lysis. Thus, the authors found that the several filtering
methods were not suitable in combination with the
interaction analysis method, which might be a general
problem when using main effects-driven filters for
selecting possibly interacting SNPs.
In conclusion, more efficient implementations and more

suitable filtering methods are still required for a compre-
hensive machine learning analysis of genomic data. Al-
though it is acknowledged that computational limits
depend directly on the machines, systems, and program-
ming languages used, and that no formal testing of these
aspects was performed in our group, this was a recurring
theme in our group discussion. It should be noted that
computational efficiency is not only relevant in the ana-
lyses themselves; it may also be a concern in the process
of simulating data, which is described in the next section.
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Message #5: Simulating complex data is a
discipline of its own
Machine learning methods are specifically designed to de-
tect or predict structures that are otherwise difficult to
find. Even though simulation experiments have strongly
been recommended to investigate these methods [1, 27,
33, 34], it automatically follows that these complex struc-
tures are also difficult to simulate. Over the past few years,
this has become even more of an issue, as complexity
relates to different types of genomic data; influence of epi-
genetic and environmental factors; intermediate and clin-
ical phenotypes; longitudinal, interactive, and conditional
effects; and the sheer number of all of these factors. The
GAW team has again taken great care to simulate com-
plex phenotypes; however, because different methods are
differently tailored to detect different facets of the data,
what is simulated might not be what a specific method is
designed for. For instance, Holzinger et al [4] hunted for
SNP-SNP interactions that were not part of the simula-
tion. Similarly, Held et al [14] investigated the tradeoff of
adding more genes to the analysis and the possible benefit
of including gene expression data; here, the results may
mirror the signal-to-noise ratio and the genotype-gene
expression relationship in the simulation, but will not ne-
cessarily be conclusive about the performance of the
method itself. In contrast to that, the approach by Sun et
al [11] included a clustering of control individuals based
on their blood pressure levels; this seemed to work well in
the simulation data, because the relationship between
blood pressure levels, hypertension, and genetic effects
had been simulated carefully.
These difficulties emphasize the importance of the de-

velopment of complex simulation tools. In line with the
results from a recent workshop [33], genetic simulation
“should not be viewed as simply a useful tool in genetic
studies, but should also be viewed as a developing scien-
tific discipline of its own.” Moving forward, there seem
to be good reasons to focus on simulating different data
sets that might each be appropriate to different scientific
questions, instead of a single, highly complex, simulated
data set. This could lead to more definitive answers and
also be more computationally efficient, though at the po-
tential expense of restricting the meaningfully applicable
methods.

Message #6: Results from complex models are
difficult to interpret
Machine learning methods traditionally have been disre-
garded as “black boxes.” This analogy suggests both that
it is not clear what the approach is actually doing, and
that their outputs often present a challenge for interpret-
ation [29, 35, 36]. Although this was, again, confirmed in
some of our contributions (Legault et al, personal com-
munication) [14, 30], this might not only be a problem

of the method but also of the complexity of relationships
that can be detected by the method, and of the numbers
of variables considered for a specific model. Phrased dif-
ferently, if classical statistical approaches model similarly
complex relationships, the result will also be a challenge
for interpretation, and this is more likely to be the case
if many features are considered. Thus, regardless of the
applied method, one bottom line is that we need to work
on improved visualization techniques for complex re-
sults (see Gola and König [30] for an example).
On the other hand, the importance of this issue again

hinges upon the objective of the study as described above.
If we aim at identifying genetic variants that are corespon-
sible for disease development or progression, interpret-
ability is obviously important. On the other hand, there
are good examples where interpretability is sacrificed in
favor of model performance. For instance, the Oncotype
DX assay is widely used to guide the treatment for
patients with different cancer subtypes. This test is based
on expression profiling of 21 genes and was proven to be
effective to predict the likelihood of cancer recurrence in
clinical trials, although lacking a clinical interpretability
(eg, Ademuyiwa et al [37] and Cronin et al [38]). Thus, if
the aim is classification or prediction of disease or pro-
gression, we may accept that a model with excellent pre-
diction properties can be difficult to interpret.

Discussion
In the course of discussing our machine learning and
data mining approaches on GAW19, we extracted 6
common messages. These depict the current state of
these approaches in the application to complex genomic
data and hint at issues to tackle in future studies.
Additionally, it is worth mentioning that our group ap-

plied a number of different machine learning algorithms
to the real and simulated GAW data, including random
forests, support vector machines neural networks, and
MB-MDR. As so often, there was no winner across differ-
ent scenarios, which is in line with the literature [35, 36,
39]. We can, therefore, confirm that it is usually unclear
which method will work best beforehand. On a side note,
if different methods fare equally well in terms of classifica-
tion or prediction, they might have very different looks at
the data, which was described as the “Rashomon effect”
by Breiman [40] and is an argument for using different ap-
proaches to more fully exploit the available information.
Further comparisons of single and combined machines
are desirable but hampered by the difficulties regarding
computational efficiency and available simulation methods
as described above. In a similar way, Chen et al [33] con-
cluded that the “…current bottleneck in research is no
longer the generation of large-scale genetic data, but the
availability of computational tools to effectively analyze
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the data as well as the means to compare and contrast
new tools.”
To conclude, our group found that analyzing the

GAW 19 data was a good opportunity to explore differ-
ent avenues in dealing with complex data using machine
learning methods. Although some challenges remain for
future studies, important steps were taken forward in
the integration of different data types and the evaluation
of the evidence. Mining the data for underlying genetic
or phenotypic structure and using this information in
subsequent analyses proved to be extremely helpful and
is likely to become of even greater use with more com-
plex data sets.
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