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Abstract

Participants in the family-based analysis group at Genetic Analysis Workshop 19 addressed diverse topics, all of
which used the family data. Topics addressed included questions of study design and data quality control (QC),
genotype imputation to augment available sequence data, and linkage and/or association analyses. Results show
that pedigree-based tests that are sensitive to genotype error may be useful for QC. Imputation quality improved
with inclusion of small amounts of pedigree information used to phase the data in evaluation of 5 commonly used
approaches for imputation in samples of (typically) unrelated subjects. It improved still further when pedigree-based
imputation using larger pedigrees was also added. An important distinction was made between methods that do
versus do not make use of Mendelian transmission in pedigrees, because this serves as a key difference between
underlying models and assumptions. Methods that model relatedness generally had higher power in association
testing than did analyses that carry out testing in the presence of a transmission model, but this may reflect details
of implementation and/or ability of more general methods to jointly include data from larger pedigrees. In either
case, for single nucleotide polymorphism–set approaches, weights that incorporate information on functional
effects may be more useful than those that are based only on allele frequencies. The overall results demonstrate
that family data continue to provide important information in the search for trait loci.

Background
Family-based designs have been a mainstay of genetic
studies for more than a century [1]. Although initially
developed for experimental organisms and controlled
crosses [2], it was not long before family-based designs
also were proposed for use in the more difficult case
of human genetics and observational studies [3–5].
Statistical and computational advances eventually led
to methods that provided estimates of heritability
and/or estimates of parameters for genetic models
from human trait data [6, 7], but it was difficult to
determine the genomic locations of underlying trait loci
until large-scale assays of DNA-level variation became
tractable [8] as a source of information for gene mapping.

Initially, mapping of human trait loci depended almost
exclusively on pedigree-based designs that conditioned
on the pedigree structure and used information from
transmission of relatively few of markers (ie, hundreds).
However, the density of the markers that eventually be-
came available (ie, hundreds of thousands to millions)
expanded the useful study designs to include large
genome-wide association studies (GWAS) consisting of
unrelated subjects, which depend on the presence of
linkage disequilibrium (LD) between trait and marker
loci [9]. Together, over the past approximately 35 years,
designs that span the use of unrelated subjects through
related subjects in pedigrees have led to successful
identification of thousands of genes relevant to human
genetic traits [10], demonstrating that designs based on
both related and unrelated subjects have important
roles to play.
The recent and growing use of sequence data provides

new insights into the underlying genetic architecture of
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many human diseases. Early evaluation of high-throughput
sequence data revealed vast numbers of very rare variants
[11], and large samples of genome-wide sequence data have
recently provided renewed evidence and appreciation for
the role of rare variation in common diseases and traits
[12–15]. To identify novel rare variants that affect disease
risk, family-based designs are again being used. However,
changes in the available data and the types of analysis de-
sired require new approaches to analysis within the
spectrum of family-based designs. This includes analysis
methods that do not need to be precise about relationships
in families, yet still make use of family-based samples. Here
we refer to such approaches as family-based methods,
which are broader than pedigree-based methods in that
only pedigree-based methods condition on the pedigree
structure. In particular, it is clear that both nonrandom
transmission of traits and markers in pedigrees and associ-
ation between trait and marker alleles in populations carry
complementary but useful information, and that association
studies need not be restricted to unrelated subjects.
Family-based designs have advantages over designs

based on unrelated subjects in a number of key areas.
First, required sample sizes for localization of variants in
the genome can be far smaller than those required for
designs based on unrelated subjects. Family-based de-
signs are particularly well suited for analysis of rare
variants, with the sample size differential between
family-based designs and designs for unrelated-subjects
for trait–gene localization measured in orders of magni-
tude [1, 16]. Second, the segregation of rare variants in a
pedigree provides multiple copies of such rare variants,
facilitating detection of their effects [16–18]. Third, the
transmission information from parents to offspring in
pedigree-based analyses allows investigation of parent-
of-origin effects [19] and/or transmission [20] bias, dis-
tinguishes plausibly genetic from nongenetic sources of
familial correlation [21], and allows identification of de
novo mutations [22] and error [23]. Such transmission
information also improves phasing [24, 25] and accuracy
for imputation of rare variants within families [26].
These were many of the motivating issues behind the
projects that constituted the family-based analysis group
at Genetic Analysis Workshop (GAW) 19.

Methods
Participants in the family-based analysis group at
GAW19 all tackled projects with a substantial, and in
most cases, exclusive, focus on family-based designs.
The 9 contributions discussed here (Table 1) were directed
at a range of tasks that are typical during components of a
family-based project directed at gene identification for a
trait of interest. The 4 main tasks addressed dealt with
topics in study design and sample selection, data prepar-
ation, data analysis, and interpretation of results. Most

groups also had to carry out some quality control (QC)
analyses. None of the topics investigated are unique to
family-based designs, but the questions asked, methods
used and evaluated, and motivating issues addressed all
focused on applications to data containing related subjects.
A brief description of the relevant data used by

the family-analysis group is provided here, with more
detail elsewhere [27, 28]. Data for the odd-numbered
chromosomes was available on a real study of 20
Mexican American pedigrees of 21 to 76 individuals/
pedigree. All pedigrees had dense single nucleotide
polymorphism (SNP) genotyping; 483 subjects in 16
of the 20 pedigrees had real whole genome sequence
(WGS) data; and 560 subjects in the 20 pedigrees
had imputed WGS data. The imputed component of
the WGS data has misclassification error, and is of
lower quality than the observed WGS data [29]. Both
real and simulated diastolic (DBP) and systolic longitu-
dinal blood pressure (SBP) measurements and composite
measures of hypertension, for 959 subjects, were available,
with 200 replicates of the simulated data generated from a
model that included the real and imputed WGS along
with environmental covariate data. In addition, genome-
wide gene expression data were available for 643 individ-
uals, and a null quantitative trait that was unlinked to any
provided chromosomes was included. A brief synopsis of
the main family-oriented strategies among the 9 contribu-
tions used to analyze these data is first described here,
with more detail further below.
Several papers included a major focus on aspects of

data preparation. Bhatnagar et al. [30] compared the
performance of methods that can be used to detect
evidence for biased transmission and in doing so, also
identified an additional potential QC step that may be
useful in pedigree samples, as shown by application to
observed vs. imputed sequence data. The papers by
Sippy et al. [31] and Saad et al. [32] address approaches
for selecting a subset of subjects for sequencing when
there are constraints on the number of subjects that can
be sequenced in a family study. Finally, the papers by
Saad et al. [32] and Lent et al. [33] compared and evalu-
ated approaches for combining both pedigree-agnostic
and pedigree-based methods to improve genotype im-
putation from subjects with WGS data into those with-
out. Here, we will use “pedigree-agnostic” for genotype
imputation methods that were designed for use on unre-
lated samples, but can be applied to samples from pedi-
grees, although without using the pedigree information.
The remaining contributions focused on diverse as-

pects of analysis of the trait data in family-based sam-
ples. Two papers by Papachristou et al. [34] and Zhou
et al. [35] addressed computational challenges of carry-
ing out family-based analysis of multivariate data by
using a 2-stage approach: a rapid initial analysis that
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ignores relatedness, followed by a computationally more
challenging analysis to correct for the effects of related
subjects among the loci implicated in the first stage.
The paper by Papachristou et al. [34] focused on carrying
out tests among multiple, correlated markers, while that by
Zhou et al. [35] focused on tests carried out among mul-
tiple, correlated, traits. Two papers carried out association
testing only with variants of pedigree-based approaches
implemented in FBAT (family-based association test) [36]
or a similar approach [37] that condition on possible
transmission of alleles or genotypes in a joint test of asso-
ciation in the presence of linkage. Wang et al. [38] evalu-
ated various possible weighting schemes for optimal
testing with FBAT, and Lin et al. [39] applied the com-
bined association in the presence of linkage (CAPL)
method with both burden and sequence kernel association
test (SKAT) [40] algorithms for rare variants to the real
hypertension data [39]. Darst and Englelman [41] com-
pared performance of the pedigree-based FBAT to a linear
mixed model approach to correct for correlation for re-
latedness. Three other papers also applied a similar linear
mixed model approach to the family data [31, 34, 35].
Finally, Saad et al. [32] introduced a novel approach to
combine transmission information obtained from pedigree
data with identity-by-descent (IBD) inferred between indi-
viduals in different pedigrees to increase linkage evidence,
thus, in some senses, combining both pedigree- and
family-based approaches.

Data used
All of the 9 papers summarized here used some or all of
the WGS data in the families together with variable
amounts of trait data. Five of the contributions used the
full genome scan WGS data [30, 34, 35, 38, 39], while 4
contributions focused on specific regions, either on

chromosome 3 alone [31–33] or on chromosomes 1 and
3 [41]. One paper [33] used only the WGS data, without
additionally including trait phenotypes. Eight papers
[30–32, 34, 35, 38, 39, 41] used 1 or more blood pres-
sure phenotypes, with all but 2 papers [30, 31] evaluating
all 200 phenotypic replicates. Seven of these 8 papers
evaluated both the blood pressure data at either one
particular visit, or collapsed the multiple temporal mea-
surements into a single variable. One paper [39] evalu-
ated the real blood pressure data, also compressed into a
single measure of hypertension. The eighth paper [35]
evaluated the real and simulated blood pressure traits at
multiple time points, as well as the real expression data.
Finally, 4 contributions also used either the simulated
null phenotype [35, 38, 41] or simulated their own null
phenotype [39] to evaluate type 1 error.
The sizes of the pedigrees used for analysis varied

widely. For some analyses, 6 of the contributions broke
down the large pedigrees provided as part of the work-
shop data into smaller pedigrees [30, 31, 33, 38, 39, 41],
referred to here as reduced pedigrees. Of these 6 contri-
butions, 1 included analysis of trio samples consisting of
2 parents and 1 offspring [1] and 4 contributions carried
out analyses with nuclear families [30, 38, 39, 41]. Three
of these 6 contributions trimmed pedigrees down to in-
clude only the subjects selected for analysis plus their
ancestors [31], to pedigrees that were small enough [33]
to use with the program Merlin [42], or to pedigrees de-
fined by the directly sequenced subset of the sample
[30]. Four contributions used pedigrees as provided, re-
ferred to here as complete pedigrees. Three contributions
used the full sample of pedigrees for some or all analyses
[30, 34, 35], and the fourth used a subset of the complete
available pedigrees [32]. Saad et al’s [32] contribution also
extended these pedigrees with a pedigree-free extension

Table 1 Data and trait analysis methods used

First author [ref] Chr Trait
source

Traits SNP seta Pedigreesb Trait analysis programsb

Transmission Correlation

Bhatnagar [30] All Sim None, HTN No Reduced, complete TDT, PDT, FBAT NA

Darst [41] 3,11 Sim SBP Yes Reduced, complete FBAT MONSTER

Lent [33] 3 None None No Reduced NA NA

Lin [39] All Real HTN Yes Reduced CAPL NA

Papachristou [34] All Sim SBP No Complete NA GEMMA, LMM+ Lasso

Saad [32] 3 Sim None, DBP No Complete, augmented MORGAN, IBDstitch NA

Sippy [31] 3 Sim SBP Yes Reduced NA FARVAT

Wang [38] All Sim DBP, SBP, HTN Yes Reduced FBAT NA

Zhou [35] 1,3, 11 Real, sim DBP, SBP No Complete NA MENDEL

All all odd-numbered chromosomes, CAPL combined association in the presence of linkage, Chr chromosome, DBP diastolic blood pressure, FARVAT family-based rare
variant association test, FBAT family-based association test, GEMMA genome-wide efficient mixed-model analysis, HTN hypertension, Lasso least absolute shrinkage and
selection operator, LMM linear mixed model, Mendel MONSTERminimum p value optimized nuisance parameter score test extended to relatives, NA not applicable,
PDT pedigree disequilibrium test, SBP systolic blood pressure, sim simulated, SNP single nucleotide polymorphism, TDT transmission disequilibrium test
aWhether or not a SNP-set approach was used
bSee text
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that made use of estimated between-pedigree IBD,
referred to here as augmented pedigrees.

Getting started: study design, quality control, and sample
selection
Contributions to the family-based group addressed 2
study-design related topics. These were (1) which pedi-
gree structures to use, and (2) which subjects to include
and/or gather data on. All participants in the family-
based group chose a class of study design that capitalizes
on the presence of related subjects in the sample, just as
members of some other GAW19 groups chose a study
design that depends on selection of only unrelated sub-
jects. Beyond choice of a general family-based design,
however, when an investigator makes a decision to use a
particular analysis method, this also results in a design
choice that can affect results of the analysis. For ex-
ample, the papers that used reduced pedigrees, described
above, made such a choice. However, only 1 paper [30]
explicitly evaluated this choice of reduced pedigrees by
comparing results obtained for the transmission disequi-
librium test (TDT) [20] on trio samples with results
from other transmission disequilibrium tests on nuclear
pedigrees extracted from the complete pedigrees. This
particular paper compared both choice of pedigree
structure designs and evidence for transmission distor-
tion in the WGS data.
All projects discussed by the family-based group car-

ried out some QC and data-checking analyses. Such ana-
lyses were not major components of most of the papers,
but most contributions did include standard procedures
such as dropping individuals or variants with excessive
missing data, checking for unexpected relatedness, and/
or using tests such as those used to detect deviation
from Hardy-Weinberg equilibrium as steps in the QC
process. One paper went further into the problem of
suboptimal quality data: Bhatnagar et al. [30] addressed
the problem of the effect of data quality on detection of
transmission ratio distortion. They evaluated several
measures of data quality and carried out analysis with
the complete WGS provided, using the modal genotype
imputation calls, and with just the observed WGS data.
They used the TDT to detect transmission distortion,
including, for comparison, analyses in nuclear families
with the pedigree transmission test (PDT) [43] and with
FBAT [44, 45].
Two papers addressed selection of subjects for sequen-

cing, given finite resources [31, 32]. In both cases, the
authors assumed that an eventual goal was to identify
rare variants that contribute to trait risk or phenotype,
but that cost or sample availability may preclude gener-
ating WGS on all available subjects. Both papers address
the problem of selecting maximally informative subjects,
given that only a subset of subjects will be sequenced.

Using a single simulated phenotypic replicate, Sippy
et al. [31] selected a set of subjects from those with the
most extreme residual values after adjustment for known
covariates, while using only related cases and controls
and eliminating parents of cases from consideration.
The assumption was that subjects drawn from 1 of the 2
extreme tails of the distribution of residual values would
be enriched for risk variants, with related subjects from
the other tail of the distribution serving as controls. The
rationale for use of related cases and controls was that
relatives would tend to share rare variants, while parent–
child pairs were eliminated to avoid the deleterious effects
of overmatching [46] on power to detect true effects. Saad
et al. [32], instead, retained the complete structure of
existing pedigrees, and compared 2 approaches to select
subjects for sequencing with the program genotype
imputation given inheritance (GIGI)-pick, which balances
choice of related and unrelated subjects [47]. Here the
metric compared was the increase in sequence variants
available for analysis that could be imputed in the
pedigrees.

Genotype imputation
Two papers carried out evaluation of multiple genotype
imputation approaches [32, 33]. The motivation behind
both contributions was to combine the strengths of both
pedigree-agnostic and pedigree-based methods to im-
prove quality of imputed genotype data in subjects with-
out WGS data. Therefore, both contributions carried out
imputation with 3 different strategies for the subjects
with missing WGS data: pedigree-agnostic imputation
alone, pedigree-based imputation alone, and joint ana-
lysis that captured information from both imputation
approaches. For joint analysis, Lent et al. [33] applied a
sequential strategy in which imputed SNPs from a
pedigree-agnostic approach with a high posterior prob-
ability were included in pedigree-based imputation as if
they were known. In contrast, Saad et al. [32] adopted a
parallel strategy where the 2 imputation approaches
were carried out independently, with the results with
greatest certainty [48] selected for each individual SNP.
In both papers, final imputed results from the same
region of chromosome 3 were summarized as allele
dosage, where dosage is the expected number of a
defined allele in the genotype.
Many of the current imputation programs were used

by Lent et al. [33] and Saad et al. [32] in their evalua-
tions. Each paper used 1 of only 2 available pedigree-
based imputation programs: Lent et al. [33] used Merlin
[49] for pedigree-based genotype imputation, while Saad
et al. [32] used gl_auto from MORGAN [50] followed by
GIGI [26]. Merlin required reducing the sizes of pedi-
gree components supplied to the program, whereas
MORGAN allowed use of complete pedigree structures.
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Several programs were evaluated for pedigree-agnostic
imputation, which involves 2 steps. The first step involves
phasing of multilocus genotypes in both the reference and
analysis samples. The reference sample contains dense
data whereas the analysis sample has many fewer markers
typed. Both projects used SHAPEIT2 [51] for this pur-
pose, with the option that is pedigree-aware. Data from
the phased reference sample were then used to “fill-in”
missing WGS data in the analysis sample. Both projects
used IMPUTE2 for this step, with Saad et al. [32] also
evaluating 4 other pedigree-agnostic approaches: BEAGLE
[52], MaCH [53], MaCH-Admix [54], and minimac [55].
Accuracy of imputation was evaluated in 2 ways. Both

groups masked part of the directly measured WGS data,
and compared imputation results in the masked individ-
uals to their true genotypes. Lent et al. [33] used a leave-
one-out approach, in which observed sequence data in
just 1 individual was masked prior to the imputation
step, repeating this for 100 randomly chosen sequenced
individuals. Saad et al. [32] masked the observed se-
quence data on either approximately 75 % or approxi-
mately 50 % of the subjects with measured WGS data.
Differences between the 2 approaches, therefore, were
the amount of WGS data assumed to be “observed”
prior to the imputation stage, the number of individuals
used for evaluation, and the size of the reference sample.
Finally, for estimation of imputation quality, both papers
reported correlation between the underlying masked ge-
notypes and those imputed, with Lent et al. [33] also
reporting the imputation quality score (IQS) [56]. The
IQS is an extension of Cohen’s Kappa statistic [57], which
measures agreement between 2 classification methods,
with IQS allowing for probabilities instead of integer
counts. IQS takes allele frequency into account, which is
desirable when combining estimates of imputation quality
of both common and rare variants.

Accounting for relatedness
The main motivation behind all linkage and association
approaches used was to use the available data across a
spectrum of relatedness. All contributors to the session
recognized the importance of using all the collected data
because of the cost of data collection, the rich informa-
tion often available, and ethical research practices that
dictate the importance of collecting human subject data
only if it will be used. Contributors also appreciated the
diversity of pedigree structures available in genetic stud-
ies, with pedigree sizes ranging from unrelated subjects
and small trio or nuclear family samples to large, multi-
generational pedigrees with many dozens of subjects. To
this end, participants generally adopted approaches that
allowed variable pedigree structures for analysis.
An important factor that differentiated among analysis

methods is how the methods deal with correlation

among related subjects in the sample. The 2 main ap-
proaches either (a) exploited or (b) corrected for the
correlation induced by related individuals. In essence,
methods that exploit the cause of correlation between
related individuals treat it as an advantage to be expli-
citly used, and are pedigree-based approaches. Methods
that correct for the family-based correlation treat it as a
problem to be removed, and are more broadly simply
family-based approaches. Methods used at GAW19 that
exploited within-family correlation typically modeled or
otherwise made use of transmission information in pedi-
grees, as this is the genetic source of such correlation.
The corresponding methods seek to extract, explain, or
use correlations within family data that are there be-
cause of Mendelian transmission. Methods within this
framework broadly include all linkage analysis methods,
joint linkage and association methods, and methods that
test association in the presence of linkage. On the other
end of the spectrum, within-family correlation was treated
as a problem by methods that treat correlation as a nuis-
ance variable. These methods attempt to adjust for related-
ness by “decorrelating” the data, typically with correlation
that is modeled through a random effects coefficient in a
linear mixed model. These methods typically consist of
methods that focus only on association methods.
The transmission-based methods used were diverse

with 5 groups using 1 or more such methods (see
Table 1). A predominant class of tests consisted of joint
linkage and association tests, or tests of association in
the presence of linkage. These tests condition on infor-
mation about transmission within the individual pedi-
grees and are robust to population stratification. These
tests depend on large sample approximations, as each
involves a normalized test statistic, T/√V(T), where T is
typically the sum of scores obtained for the individual
analysis units, and V(T) is computed under the null hy-
pothesis. These units may be alleles, as in the TDT, ge-
notypes in trios, as in the PDT, or genotypes in nuclear
families, as in FBAT. The tests used included the original
TDT, as well as an early similar approach for general
pedigrees in the PDT [43]. The approaches used by par-
ticipants of the family analysis group also included the
CAPL test [37], and various flavors of FBATs, including
a version designed for rare variants (FBAT-RV) [58, 59].
To evaluate joint evidence for linkage and association,
both of the CAPL and FBAT approaches handle nuclear
families with potentially multiple siblings, and condition
on genotypes within the individual nuclear families [49].
FBAT handles pedigrees as a series of nuclear pedigrees
extracted from the extended pedigrees for purposes of
analysis, and also includes a number of options for both
discrete and continuous data, and for rare and common
variants. Transmission-based methods also included
pedigree-based multipoint linkage analysis that use IBD
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information within pedigrees together with a new exten-
sion that also incorporated estimated IBD between mem-
bers of different pedigrees [60]. To handle the large
pedigrees and many markers in multipoint computations,
Markov chain Monte Carlo (MCMC) methods [50] were
used by Saad et al. [32].
Other methods used by participants treated correlation

from relatedness as something that needed to be ad-
justed for or removed as part of the analysis through
“decorrelating” the data. The general approach adjusted
for the effect of relatedness among individuals through a
random effects model, with the kinship matrix structur-
ing the covariance among subjects [31, 34, 35, 41]. These
are family-based approaches in that although pedigree
information can be summarized through the kinship
matrix, the kinship matrix does not specify a unique
pedigree structure, nor do the methods need the actual
pedigree structure. The challenge with these approaches
is that while they do a good job at controlling for un-
wanted correlation from related subjects in association
testing, they add a significant computational burden and
are sensitive to any stratification or heterogeneity in the
sample. Several different implementations were used by
participants, including MONSTER (minimum p value
optimized nuisance parameter score test extended to
relatives) [61], GEMMA (genome-wide efficient mixed-
model analysis) [62], FARVAT (family-based rare variant
association test) VC [63], Mendel [64], and implementa-
tions derived as part of GAW19 participation [34].
Additionally, 2 contributions used a 2-stage approach to
speed up the computations [34, 35]. Each carried out
initial analyses while ignoring relatedness, and followed
up on initial analyses with focused reanalysis that in-
cluded a random effects model to adjust for relatedness.
This strategy gave rapid results by using the mixed
model only for reanalysis of key variants after a compu-
tationally simpler initial genome scan [35]. Selective use
of a correction for relatedness only after an initial pre-
screen that ignored relatedness was also successful in
eliminating of false-positive results from joint analysis of
multiple genes and variants [34].

SNP-set approaches and weighting
With the current focus on rare variants, approaches that
are based on SNP-set approaches have become common,
and 3 groups used such approaches (see Table 1). For
many human genetic traits there are many, very rare,
alleles for the relevant genes [65]. Sequencing studies of
normal individuals confirm the large number of rare var-
iants in a typical genome [11], and it has been hypothe-
sized that much of the heritability that is not accounted
for by common variants identified in large GWAS may
be attributed to such rare variants [66]. Analysis of rare
variants pose a problem of low power, and to achieve

adequate sample sizes for association testing, it is neces-
sary to combine information across sets of potential con-
tributing variants in order to adequately increase the
number of “risk-variant carriers” versus “noncarriers” in
a sample. Although there are many ways to construct
such SNP-sets, a first analysis may logically group SNPs
within genes, possibly broadly defined to include control
regions. Weights may also be applied to the individual
variants within a SNP-set, to accommodate prior belief or
other outside evidence of contribution to risk. Weights
may be based on allele frequency [67], functional predic-
tion, or more complex models that incorporate multiple
sources of such information [68]. The FBAT rare-variant
(FBAT-RV) test [58], used by Darst and Engleman [41]
and by Wang et al. [38], uses frequency-weights, for ex-
ample. In their contribution to the workshop, Wang et al.
[38] focused on the topic of selection of weights FBAT-RV
as the baseline. They evaluated weights derived from
genotype risks estimated from single-variant results, an
optimum test that assumed independence of rare variant
effects, and weights based on functional prediction. Fi-
nally, SNP weights together with the defined SNP-set can
be combined into a number of different types of tests, in-
cluding FBAT, burden, and SKAT-type tests. Burden tests
typically involve a simple sum of the weighted individual
SNP effects [69], whereas SKAT-type tests [40] involve
squared SNP effects so that assumptions about a con-
sistent direction of effects are not necessary. One
contribution compared a burden versus a SKAT-like
implementation of the CAPL, with a frequency-based
weight function, with an application to the real hyper-
tension data [39].

Results
Getting started: study design, quality control, and sample
selection
Both Sippy et al. [31] and Saad et al. [32] reported that
that there were potential gains from strategic selection
of subjects to sequence. For MAP4, a gene with several
variants affecting simulated SBP, Sippy et al. [31] found
that evidence for association with hypertension was
much stronger in the selected sample than in the total
unselected set of subjects: the p value from a mixed-
model gene-based SNP-set test of association decreased
from 0.31 in the unselected sample to 0.0068 in the se-
lected sample. It is notable in this context that the sam-
ple size of selected cases and controls that was less than
50 % of the total sample. Similarly, Saad et al. [32] found
that by selecting subjects with the pedigree-focused pro-
gram GIGI-pick, imputation accuracy increased over selec-
tion of random subjects for sequencing. The improvement
was greatest for variants with the rarest minor allele fre-
quency (MAF), but was present across the allele-frequency
spectrum. Remarkably, this increase was found for all of
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the imputation methods evaluated, even though most do
not make use of pedigree information.
Quality of the WGS had a large effect on evidence of

transmission ratio distortion. Bhantagar et al. [30] found
that the TDT produced highly inflated test values when
applied to the complete WGS data (observe plus imputed).
Use of multiple siblings in nuclear families with the
PDT and FBAT eliminated most evidence of transmission
distortion in the complete WGS data. Investigation of the
source of association in the TDT showed that variants
with evidence for deviation from Hardy-Weinberg equilib-
rium were clustered in regions with strong TDT associ-
ation signals, and that therefore these 2 approaches may
pick up much of the same signal regarding poor data qual-
ity. The TDT applied to the observed WGS data, alone,
produced the expected distribution of p values under the
null hypothesis of unbiased transmission, while the PDT
and FBAT tests were conservative with or without
inclusion of the imputed WGS data.

Imputation
Genotype imputation from joint use of pedigree-agnostic
and pedigree-based methods gave higher quality results
than did either approach alone [32, 33]. This was most
apparent for SNPs with low MAF, where pedigree-
agnostic methods tend to be less accurate. However, the
effect was there for the entire MAF spectrum. The gains
from the joint strategy were also greater in situations
with fewer individuals initially sequenced, as shown by
results of Saad et al. [32] that used either approximately
25 % or approximately 50 % of the sample as “observed”.
This can be explained by the known effect of the num-
ber of sequenced subjects on the initial phasing accuracy
in the sample [70]. In contrast, pedigree-based imput-
ation accuracy was essentially constant across the differ-
ent fractions of “observed” subjects used between the 2
contributions, irrespective of which pedigree-based ap-
proach was used. It is worth noting that use of either the
correlation coefficient or the IQS lead to similar conclu-
sions in evaluation of imputation quality, although the
IQS provided more separation in quality scores than did
the correlation coefficient [33].
There were differences in imputation quality among

choices of pedigree-agnostic approaches. An important ob-
servation was that use of SHAPEIT2 for phasing with the
pedigree-aware option was clearly better than were any of
the phasing options that are part of the native imputation
programs tested. This led to higher quality imputation re-
gardless of the pedigree-agnostic imputation method used.
A second observation was that the program minimac gave
considerably higher quality imputation results than did
either MaCH and MaCH-Admix, given a particular choice
of phasing program. This was surprising as it is reported to
use the same algorithm as does MaCH, but with faster

computation [55, 71]. After accounting for the superior
performance of minimac relative to all the other pedigree-
agnostic methods, the remaining programs had different
strengths and weaknesses, with IMPUTE2 and MaCH-
Admix giving generally better results than MaCH at all
allele frequencies, and Beagle underperforming the other
programs at low to moderate allele frequencies, but doing
well at high allele frequencies.

Accounting for relatedness
Accounting for relatedness by either a transmission or a
correlation model appeared to adequately control for the
presence of related individuals in association tests, as
indicated by estimates of type 1 error [35, 38, 39, 41].
However, with only 200 simulated replicates provided
for the null trait, it was not possible to use the data
provided to evaluate performance of the tests at more
extreme significance levels than the nominal ones
used. From quantile–quantile (Q-Q) plots for analyses
of the WGS data with the PDT and FBAT, there is
strong indication that the tests are quite conservative
in the extreme tail of the distribution [30]. Also,
while the tests may account for relatedness, they do
not necessarily correct for poor quality of the data,
which also impacts the tests, as shown by the large
number of false-positive results for the TDT analysis
that included imputed WGS [30].
Results both within and across the contributing groups

suggest that pedigree-based approaches that use a trans-
mission model to account for relatedness in association
testing lose power relative to family-based approaches
that use a correlation model to “decorrelate” the data.
For the MAP4 gene and a significance level of 0.05, the
family-based mixed model approach in MONSTER ap-
plied to DBP had nearly complete power to detect asso-
ciation with blood pressure [41]. Similarly, analysis with
Mendel for trivariate longitudinal DBP and SBP pheno-
types [35] gave only a slightly lower power of 82 % to
84 % for the 2 SNPs with the strongest effects. In con-
trast, 3 versions of the pedigree-based FBAT programs
had power ranging from 0.37 to 0.82 for the same gene
and DBP [41]. Other results from FBAT models with
different weighting schemes are consistent with this,
with power estimates of 0.51 to 0.68 [38].
Analysis with a transmission model that consisted of

the known model did well at trait localization [32]. Of
note in this contribution was its novel approach that
combines transmission information acquired from con-
ditioning on the complete known pedigree structure
with incorporation of more general information about
relatedness between individuals who are not known to
be related. This increased, considerably, the evidence
localizing the trait locus. Two features are key to this
result. First, although joint transmission of the trait and
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markers within pedigrees of known structure was evalu-
ated with standard methods, information about marker
IBD between founder individuals within a pedigree can
change the information about transmission within a
pedigree, thus having an effect on inference obtained.
Second, IBD between members of different pedigrees
can also be captured, with the correlation between this
IBD and trait status additionally captured as part of the
analysis, similarly affecting inference.
The 2-stage strategies for speeding up computations

involving correlated family data showed promise for
practical situations. Although these approaches initially
ignored the fact that there were correlated observations
in the sample, the subsequent more computationally in-
tensive analyses that correct for such correlated observa-
tions, applied only for a few key tests, appeared to
provide reasonable final success rate. Follow-up analyses
that corrected for relatedness reduced the number of
key variants after a simple genome scan identified some
(simulated) causal variants with reasonable evidence for
association, and analysis of a bivariate blood pressure
trait had greater power to detect 2 of the underlying
simulated variants than did analysis of a univariate trait
[35]. Similarly, this 2-stage approach of carrying out the
full computation only when necessary allowed elimination
of false-positive results in the multivariant LASSO (least
absolute shrinkage and selection operator) approach [34].

SNP-set approaches and weighting
Contributions of the groups that explored different
weights and SNP-set tests were consistent with a model
that not all rare variants are deleterious. Starting with
FBAT-RV and allele-frequency-defined weights [58] as a
baseline, Wang et al. [38] found that use of weights that
incorporated some outside measure of risk generally in-
creased power over use of only allele-frequency-defined
weights for each of the 5 loci tested. The gains in power
were generally modest, and there were also a few situa-
tions where a particular choice of weights reduced
power to detect association. In their implementation of
both a burden and SKAT-like model in the CAPL statis-
tic, Lin et al. [39] found that among the top 10 test re-
sults, more genes were nominated by the CAPL-SKAT
test than by the CAPL-burden test. While this could
indicate a problem with the type 1 error, the results
obtained to verify the type 1 error provide no evidence of
a difference between the 2 versions of the test at a
nominal type 1 error.

Discussion and conclusions
As has been found in previous GAWs, the family-based
group at GAW19 found many merits to analysis of
family data. For example, results obtained by capturing
transmission information in the smallest possible family

units, compared to no use of family data, showed that
there are some types of analyses that can only be carried
out in a family-based sample. Other analyses benefitted
from use of family data even in situations where the
main analysis might be directed at a sample of unrelated
subjects. For example, results obtained showed that
compared to no use of family data, by capturing trans-
mission information in the smallest possible parent–
child family units, phasing prior to imputation leads to
improved genotype imputation with any of the available
pedigree-agnostic imputation programs. Finally, the
GAW19 sample and generating model was able to provide
meaningful statistical results with existing methods, even
for traits for which variation in individual genes contrib-
utes relatively small amounts to the total phenotypic vari-
ance. It is important to note that this family-based sample
was ludicrously small by the current standards of GWAS
studies, and therefore serves as a reminder of the effi-
ciency of family studies for the study of rare variants.
Even though some of the simulated effects were de-

tectable in the sample provided, the results also showed
that this was not true for all simulated effects. If we are
to explain all or even most of the heritability of import-
ant genetic traits, more work will be needed to design
more efficient studies and to develop methods that can
extract more information from a limited number of sam-
ples. There were suggestions for approaches that might
contribute to these goals, including more careful choice
of subjects for sample inclusion based on phenotype
information and relative position of subjects to be se-
quenced within a pedigree. As has been found over and
over again, more is not always better: a small clean sample
with a strong signal can have more power than a larger
dirty sample, given finite resources.
It is encouraging that there continue to be gains in the

quality of genotype imputation, since such imputation
provides information for very little cost. It is also notable
that some of these gains are the consequence of adding
information that can still only be obtained from pedigree
data, even for the goal of genotype imputation in unre-
lated subjects. Not surprisingly, the advantages of incorp-
orating pedigree information were particularly notable for
rare variants. In addition to improvements in pedigree-
agnostic imputation, results at this workshop and else-
where [48] demonstrate that combining pedigree-agnostic
and pedigree-based imputation gives better quality results
than either alone. It will be important to continue to de-
velop and evaluate ways to incorporate both pedigree-
agnostic and pedigree-based genotype imputation beyond
the initial approaches that now exist. This is likely to be
particularly important for very rare variants relevant to
human genetic traits for which pedigree-agnostic methods
do not work well. The challenge will be to avoid reinvent-
ing the wheel: There is an extensive literature on efficient
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methods for computations in pedigrees that could be
harnessed to assist with this effort.
It is clear that there are many trait analysis methods

that can be used for family data. The evaluation of the
group even found new uses for older tests, such as use
of the TDT as a potential additional QC filter for use in
pedigrees with sequence data. Sensitivity of the TDT to
genotype error is well known, but this has not before
been used as a feature rather than something that needs
correction [72]. Demonstration that some of the tests
appear to be highly conservative in the extreme tail of
the distribution suggests need to reevaluate the proper-
ties of some of the tests for use on current genomic data.
From this GAW19 workshop and the previous one [73],
it is also fairly clear that when testing for association
with large families, methods that retain the full pedigree
structure for analysis have greater power than methods
that break up the pedigree into smaller units. This
means that methods based on, for example, a linear
mixed-model framework have higher power to detect
association than those based on tests of biased transmis-
sion, such as that implemented in FBAT, where large
pedigrees are broken into parts for analysis. This obser-
vation about the value of the larger sizes of pedigrees
has also been well-known for many years in the context
of linkage detection methods [74], so it is not surprising
to see it return in the context of association testing in
pedigree samples. This should be taken into account for
both future developments, and in design of studies. The
challenge of using the more powerful methods is in part
computational, although some suggestions for handling
these issues were provided in this workshop.
One additional challenge for the future is the choice of

weights for SNP-set approaches. Results from this work-
shop showed that a good choice of weights can make a
difference, but there was no further discussion of strat-
egies for determining the number of variants or size of a
region to be evaluated jointly. Workshop presenters also
showed that some allowance for functional impact seemed
to work better than simply applying an allele-frequency
weight, but there are still many options for determining
detailed weights. Presumably ability to generalize these re-
sults to real data will depend on the quality of our infor-
mation regarding functional impact. However, given the
vast number of rare variants in the genome, it is not sur-
prising that allele-frequency, alone is an insufficient filter.
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