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MAPK1/ERK2 as novel target genes for pain
in head and neck cancer patients
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Abstract

Background: Genetic susceptibility plays an important role in the risk of developing pain in individuals with cancer.
As a complex trait, multiple genes underlie this susceptibility. We used gene network analyses to identify novel target
genes associated with pain in patients newly diagnosed with squamous cell carcinoma of the head and neck (HNSCC).

Results: We first identified 36 cancer pain-related genes (i.e., focus genes) from 36 publications based on a literature
search. The Ingenuity Pathway Analysis (IPA) analysis identified additional genes that are functionally related to the
36 focus genes through pathway relationships yielding a total of 82 genes. Subsequently, 800 SNPs within the 82
IPA-selected genes on the Illumina HumanOmniExpress-12v1 platform were selected from a large-scale genotyping effort.
Association analyses between the 800 candidate SNPs (covering 82 genes) and pain in a patient cohort of 1368 patients
with HNSCC (206 patients with severe pain vs. 1162 with non-severe pain) showed the highest significance for
MAPK1/ERK2, a gene belonging to the MAP kinase family (rs8136867, p value = 8.92 × 10−4; odds ratio [OR] = 1.33,
95 % confidence interval [CI]: 1.13–1.58). Other top genes were PIK3C2G (a member of PI3K [complex], rs10770367,
p value = 1.10 × 10−3; OR = 1.46, 95 % CI: 1.16–1.82), TCRA (the alpha chain of T-cell receptor, rs6572493, p value = 2.84 × 10−3;
OR = 0.70, 95 % CI: 0.55–0.88), PDGFC (platelet-derived growth factor C, rs6845322, p value = 4.88 × 10−3; OR = 1.32, 95 %
CI: 1.09–1.60), and CD247 (a member of CD3, rs2995082, p value = 7.79 × 10−3; OR = 0.76, 95 % CI: 0.62–0.93).

Conclusions: Our findings provide novel candidate genes and biological pathways underlying pain in cancer patients.
Further study of the variations of these candidate genes could inform clinical decision making when treating cancer
pain.
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Background
Head and neck cancer is the sixth most common malig-
nancy worldwide. Squamous cell cancer of the head and
neck (HNSCC) is the most common head and neck can-
cer that includes cancers of the oral cavity (including the
gums and tongue), pharynx, and larynx. Relative to other
cancers, patients with head and neck cancer have a better
prognosis, with overall mortality rates for head and neck
cancers declining since 2001 [1]. However, as many as two
thirds present with advanced stage of disease and with de-
bilitating symptoms that impacts their quality of life [2].
Therefore, clinical management of symptoms associated
with head and neck cancer and cancer treatment is an
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important goal in managing patients with head and neck
cancer.
Pain, which is often the first symptom of head and neck

cancer, is prevalent and may be persistent, adversely affect-
ing the quality of life of survivors [2]. Recently, we showed
that pain impacts survival [2] in head and neck cancer pa-
tients. Therefore, understanding risk factors for pain has
huge clinical implications. Our studies and those of others
have shown that genetic factors play a key role in vulner-
ability to pain in cancer patients, and have identified im-
portant candidate genes such as opioid receptor genes (e.g.,
OPRK1 and OPRM1) [3–6], catechol-O-methyltransferase
(COMT) [7, 8], and cytokine genes [9–17]. These studies
mainly focused on specific biological pathways. However,
as a complex human trait, it is understood that several
genes underlie pain [9, 10, 16, 18, 19] and a comprehensive
assessment of genetic risk factors and putative biological
pathways for pain is compelling.
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The purpose of this study is to identify cancer pain-
related genes using a literature search following with the
Ingenuity Pathway Analysis (IPA; Ingenuity® Systems,
www.ingenuity.com) and then to assess association
between the common genetic variants within these IPA-
derived genes and cancer related pain in HNSCC patients.
Recently, novel network-based approaches have been
employed to systematically explore the molecular com-
plexity of diseases [20–24]. Network-based approaches
can provide a “big” picture that integrates epidemiological
associations with the body of scientific knowledge about
complex intracellular and intercellular interactions
involved in diseases [23, 25]. Further, network-based ap-
proaches have the advantage of identifying disease- or
phenotype-related genes and pathways, and in turn, can
offer a better understanding of the underlying biological
mechanisms [21]. In this study, we used IPA as a bioinfor-
matic tool to synthesize the comprehensive pathway and
network analyses of the known genes implicated in cancer
pain, which we retrieved from the literature review. The
network generated from the IPA core analysis suggests
new candidate genes for cancer pain studies. Subse-
quently, we selected 800 SNPs from a large-scale genotyp-
ing effort, genotyped using Illumina HumanOmniExpress-
12v1 BeadChip, within the IPA-derived candidate genes
and evaluated their association with pre-treatment pain in
patients newly diagnosed with squamous cell carcinoma
of the head and neck.
Methods
We first conducted a literature search on genetic
studies of pain, as described below. Second, using
genes pooled from literature as a starting point, we
used IPA to generate gene networks for pain and
identified additional genes that are functionally related
to the genes obtained from literature search; and fi-
nally, we selected SNPs from a large-scale genotyping
effort within those IPA-derived genes and assessed
the association between the SNPs and pre-treatment
pain in 1368 HNSCC patients.
Table 1 Numbers of articles obtained using different search terms

Search terms # of articles by PubMed search # of ar

Cancer pain SNPs (SNP) 74 20

Cancer pain genes (gene) 1207 0

Cancer neuropathic pain SNPs (SNP) 4 0

Cancer neuropathic pain genes
(gene)

78 2

Cancer chronic pain SNPs (SNP) 12 0

Cancer chronic pain genes (gene) 204 0

Total 1579 22
Literature search
We used the PubMed database to perform a comprehen-
sive literature review, limiting our search to human studies
and articles published in English prior to July 2014. The
primary purpose of the literature search was to identify
genes associated with pain in cancer patients. The genes
identified through this search will serve as “focus genes”
in the IPA analyses. The search terms used were “cancer
pain SNP,” “cancer pain SNPs,” “cancer pain gene,” cancer
pain genes,” “cancer chronic pain SNP,” “cancer chronic
pain SNPs,” “cancer chronic pain gene,” “cancer chronic
pain genes,” “cancer neuropathic pain SNP,” “cancer
neuropathic pain SNPs,” “cancer neuropathic pain gene”
and “cancer neuropathic pain genes”. Particularly, we used
singular and plural keywords separately because we identi-
fied additional papers through such search than using only
singular keywords. We screened the articles initially iden-
tified in our search on the basis of the title, abstract, and
full text, and excluded duplicate articles. We then manu-
ally searched the reference lists of those articles and of re-
lated review articles to identify additional relevant articles
(Table 1). From these studies, we retrieved information
about genes that harbor or are close to significantly associ-
ated genetic variants (SNPs or haplotypes) and included
those genes in the IPA. In particular, we included only
genes that either have a known biological functional sig-
nificance (e.g., mediators of the inflammatory response,
multi-drug resistance, or drug metabolism) or have been
replicated in an independent study.

Ingenuity pathway analysis
IPA is a system that connects a list of molecules into a
set of networks using the scientific information con-
tained in the Ingenuity Knowledge Base, which is the
largest knowledge base of biological interactions and
functional annotations [23, 26]. In the networks, nodes
are used to represent molecules, which include genes,
chemicals, protein families, complexes, microRNA spe-
cies and biological processes [27]; whereas lines (edges
and arrows) connecting two molecules are used to rep-
resent relationships between them.
ticles by initial screen # of articles from references # of articles included

14 34

0 0

0 0

0 2

0 0

0 0

14 36

http://www.ingenuity.com
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In this study, we utilized the IPA core analysis function
to provide interpretation for the genes identified from
the literature review (denoted as focus genes in IPA) in
the context of biological functions and canonical path-
ways, as well as to generate relevant networks identifying
additional genes that interact with the focus genes. The
resulting genes could be considered as candidate genes
of interest for future studies of cancer pain. The network
generated from IPA analysis also provides a bigger pic-
ture about the genes that are likely to be interacting and
are directly or indirectly associated with the cancer pain.
The core analysis function in IPA determines bio-

logical functions, searches for signaling and metabolic
canonical pathways and creates molecule networks on
the basis of the focus genes [28]. The biological functions
and canonical pathways are based on the literature and
are independent of focus genes. The network is created
using the focus genes. Each focus gene, irrespective of
how many papers reported that gene, is equally weighted
in the IPA core analysis. In the IPA core analyses, the key
assumption in developing a network is that the biological
function involves locally dense interactions [29]. The net-
work generation algorithm involves the following steps:
(1) rank the focus genes in a decreasing order based on
their connectivity; (2) the most connected focus gene is
used as the starting seed gene and a seed gene network is
generated using a subset of remaining focus genes that are
in the neighborhood of the starting seed gene. A neighbor-
hood is defined as a gene plus the genes exactly one con-
nection away from that gene; (3) generate the second seed
gene network using the focus genes not belonging to the
first seed gene network. The process continues until all
focus genes are included in a seed gene network; (4) con-
nect the seed gene networks through additional non-focus
genes; (5) connect additional genes or networks from IPA’s
database to the existing network if the network has not
reached the maximum pre-specified network size (e.g.,
140 genes). Specifically, when identifying additional genes
to be added, IPA gives priority to the genes that have the
largest overlap with the existing network and have the
least number of neighbors. This property is measured
using a metric called specific connectivity, which is calcu-
lated by dividing the number of genes in the intersection
of the neighborhood and the existing network by the
union of the number of genes in the neighborhood and
the existing network [29]. The gene with the highest spe-
cific connectivity score is included in the existing network.
Importantly, with the use of this network generation algo-
rithm, the IPA analysis can exclude a focus gene from the
resulting network if such a gene is less likely to have con-
nections (i.e., biological relationships) with the network.
The resulting functions/pathways/networks are evalu-

ated using a right-tailed Fisher’s exact test. The p values
obtained on the basis of this test measure the likelihood
that the association between a set of focus genes and a
given function/pathway/network is due to random chance
[30]. The null hypothesis is that the proportion of the
focus genes mapping to a function/pathway/network is
similar to the proportion that are mapped in the entire
reference set [28]. A score, which is assessed as
-log10(p value), is used to rank the resulting func-
tions/pathways/networks. We used a significance level
of <10−5 in our study (score > 5) when selecting net-
works as used in previous studies [23].
In our IPA core analysis, we considered the following

settings. We used the Ingenuity Knowledge Base as the
reference set. Because our focus was on the genetic stud-
ies of cancer pain, we included only genes and not the
endogenous chemicals. We used all data sources, includ-
ing Ingenuity Expert Information and Ingenuity Sup-
ported Third Party Information. We limited our analysis
to human only studies and included tissues and primary
cells. Both direct and indirect relationships were consid-
ered for the network analysis. When generating net-
works, we used the settings of a maximum of 140 genes
per network and 25 networks per analysis, because the
networks up to 140 genes allow for the possibility that
the same network can include all focus genes [24]. Ad-
hering to the hypothesis that highly connected mole-
cules (called hubs) are typically associated with diseases
or biological functions in humans [21–24, 29], we re-
ported the most interconnected genes in the networks
as the key genes of interest.

Pain and head and neck cancer genetic association
The study population included adult patients with newly
diagnosed, histologically confirmed, previously untreated
HNSCC. All patients were self-reported Caucasians. The
study was approved by the Institutional Review Board at
MD Anderson Cancer Center (MDACC), and all partici-
pants provided written informed consent.
Pre-treatment cancer pain was rated using a standard-

ized 11-point numeric scale (0 = “no pain” and 10 = “pain
as bad as you can imagine”) [31] at presentation of the
patients before initiating cancer therapy. We considered
a binary pain phenotype, where cases (severe pain) were
individuals with severe pre-treatment pain (score ≥ 7)
and controls (non-severe pain) were individuals with
non-severe pre-treatment pain (score < 7). The study in-
cluded 1368 HNSCC patients, with 206 severe pain cases
(145 male, 61 female; mean age 57 years, standard devi-
ation [sd] = 12) and 1162 non-severe pain controls (915
males, 247 females; mean age 58 years, sd = 11). Geno-
typing was conducted at MDACC, using the Illumina
HumanOmniExpress-12v1 BeadChip. Samples with SNP
call rates <90 % were excluded from the analysis. We in-
cluded all the SNPs from this chip that were within the
newly derived candidate genes in our genetic analyses.
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Statistical analyses were conducted using PLINK (v1.07)
[32] and R (v2.15) software. A nearest neighbor cluster
analysis based on genetic similarity was conducted to
identify the clusters of individuals, which was used as a
covariate in the association analysis. Deviation from
Hardy-Weinberg Proportion (HWP) for each SNP was
assessed by a 1 degree-of-freedom χ2 test or Fisher’s exact
test, where an expected cell count was < 5. SNPs departing
from HWP (p value ≤ 10−6) and minor allele frequencies
(MAF) ≤ 5 % in all samples were excluded from the ana-
lysis. The association between each SNP genotype and
pre-treatment severe pain status was assessed using multi-
variable unconditional logistic regression, adjusting for sex
and age. We report SNPs with the lowest p value belong-
ing to a molecule (a gene or a group of genes) [33–37].
Results
Literature review
The overall study flowchart is shown in Fig. 1. Searching
the PubMed database using different search terms, we
identified 1579 articles. After screening the title, abstract
and full text, we excluded 1557 articles for the following
reasons (Table 1): (1) not human studies; (2) not pub-
lished in English; (3) meta-analysis study, review or letter
to the editor; (4) clinical trial studies; (5) not genetic as-
sociation studies; (6) not pain-related phenotypes stud-
ies; (7) not cancer patient studies; and (8) duplicate
articles from different searches. We then manually
searched the reference lists of the 22 articles identified
through our search and exclusion criteria and other re-
lated review articles about genetic pain studies, and fur-
ther identified 14 articles. As a result, we had a total of
36 articles from which we identified the genes that will
serve as our “focus genes” in order to perform the IPA
core analysis (Additional file 1).
The information we retrieved from each of the studies

included year of publication, first author, patient ethnicity,
cancer type, sample size, phenotypes, and significant
Fig. 1 Study flowchart
genes, which are listed in Additional file 1. These studies
included different cancer sites and multiple ethnicities.
Different pain-related phenotypes were covered in these
studies, such as absolute pain increase between baseline
and follow-up, pain intensity before and after opioid ad-
ministration, contact heat pain and cold pain, persistent
postsurgical pain, percentage of pain relief, and aromatase
inhibitor-associated musculoskeletal adverse events. We
included several studies that employed phenotypes that
combined pain measures with other cancer patient symp-
toms, such as fatigue, depressed mood and morphine
side-effect scores, using symptom cluster, a tree-based ap-
proach and principal component analysis.
All the 36 articles were association studies between

SNPs (or haplotypes) and cancer pain related pheno-
types, using either a candidate gene study or a genome-
wide association study. From these articles, we identified
36 focus genes eligible for IPA core analysis for pain,
which either harbor or are close to the genetic variants
(SNPs or haplotypes) found to be statistically signifi-
cantly associated with the pain-related phenotypes in
cancer patients, as listed in Table 2. Some of the genes
were implicated in multiple studies. For example, genetic
variants within OPRM1 have been associated with the
symptom of cancer pain in four articles [3–6]; and gen-
etic variants within COMT have been associated with
cancer pain in three articles [7, 8, 38].

IPA core analysis
Six networks were revealed from the IPA core analysis.
Based on a nominal significance level of 1 × 10−5, only one
network was significant (p value of 1 × 10−43), with 26 of
the 36 focus genes (Fig. 2; green: focus genes with less
than 15 connections; red: molecules with at least 15 con-
nections; yellow: focus genes with at least 15 connections).
In the network, the solid and dashed edges or arrows
stand for direct and indirect interactions, respectively. Fig-
ure 2 shows the network of focus genes (i.e., known cancer
pain-associated genes) and additional non-focus molecules
directly or indirectly related to the focus genes.
We are particularly interested in the molecules with

most interconnections since it is hypothesized that highly
connected molecules are most likely associated with dis-
eases or biological functions [21–24, 29]. Therefore, in
Table 3, we reported the top 25 out of 140 molecules that
had at least 15 connections (i.e., hubs) in the network
shown in Fig. 2 (red and yellow nodes), ranked by the
numbers of connections for each of the molecules. The 11
molecules in bold are focus genes. Therefore, we identified
14 additional molecules (most interconnected) that have
either direct or indirect interactions with the focus genes
obtained from the literature review. These were the candi-
date molecules of interest in the following genetic associ-
ation analysis.



Table 2 Cancer pain related genes from the literature

Significant genes References

OPRM1 Klepstad P [3]; Campa D [4]; Droney JM [5];
Ochroch EA [6]

COMT Hickey OT [7]; Fernández-de-las-Peñas C [8];
Kambur O [38]

IL8 Reyes-Gibby CC [9]; Reyes-Gibby CC [12];
Reyes-Gibby CC [16]

PTGS2 Reyes-Gibby CC [18]; Rausch SM [81];
Reyes-Gibby CC [19]

TNFa Reyes-Gibby CC [10]; Reyes-Gibby CC [18];

IL10 Rausch SM [13]; Stephens K [17]

CYP19A1 Mao JJ [82]; Garcia-Giralt N [83]

IL4 Illi J [14]; Stephens K [17]

IL1R1 McCann B [15]; Stephens K [17]

IL13 McCann B [15]; Stephens K [17]

ABCB1/MDR1 Campa D [4]

IL6 Reyes-Gibby CC [10]

NFKBIA Reyes-Gibby CC [18]

TCL1A Ingle JN [84]

GCH1 Lötsch J [85]

CACNG2 Nissenbaum J [86]

IL1RN Rausch SM [13]

SPON1 Galvan A [40]

RHBDF2 Galvan A [40]

ZNF235 Galvan A [40]

OPRK1 Droney JM [5]

COX1 Ochroch EA [6]

LTA Rausch SM [81]

ABCC2 Sloan JA [87]

ABCC4 Sloan JA [87]

CYP17A1 Garcia-Giralt N [83]

VDR Garcia-Giralt N [83]

CYP27B1 Garcia-Giralt N [83]

ENOS Reyes-Gibby CC [19]

IL1B Reyes-Gibby CC [19]

TNFR2 Reyes-Gibby CC [19]

IL10RB Reyes-Gibby CC [19]

IFNG1 Stephens K [17]

IL1R2 Stephens K [17]

NFKB1 Stephens K [17]

GFRa-2 Wang K [88]
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In addition to the network, the IPA core analysis also
provided the most significant canonical pathways
(Table 4) and biological functions (Table 5) across all the
focus genes. Table 4 shows the top canonical pathways
(p value < 1 × 10−5) discovered by the IPA core analyses.
The significant p-value implies over-representation of
focus genes in that pathway. We also calculated ratio of
the number of focus genes included in the canonical path-
way divided by the total number of genes that make up
the canonical pathway. The canonical pathways in Table 4
are ranked by the ratios. The most significant canonical
pathway was Hepatic Cholestasis (p value = 3.16 × 10−24)
whereas Airway Inflammation in Asthma had the highest
ratio (0.75). In addition, the Table 4 also showed that the
identified focus genes are mostly related to cytokine sig-
naling, a pathway that affects the human immune system
and inflammation. The proteins expressed by these genes
are found in both intra- and extra-cellular matrices. In
other words, focus genes that have been connected to
cancer pain are not restricted to certain subcellular
compartments.
Table 5 lists the top 20 biological functions discovered

by the IPA core analyses, which are ranked using the
scores described in Methods section (−log10(p value)).
The top biological functions related to the focus genes
are, in general, related to inflammation. The analysis
provides a measure of association of focus genes with
biological functions. The smaller p values imply that the
association is non-random. The two most significant
biological functions identified through this analysis were
lipid metabolism and small molecule biochemistry, and
inflammatory disease with p values 1.50 × 10−24 and
3.74 × 10−24, respectively.

Genetic association between IPA-derived genes and
pre-treatment pain in HNSCC patients
We used the 25 most interconnected molecules (i.e.,
hubs) identified through the IPA core analysis (Fig. 2) as
the candidates in the association analysis, as listed in
Table 3. Eleven of the 25 candidate molecules were focus
genes identified through the literature review. In our
study, the candidate molecules identified through IPA
core analysis have sub-members (i.e., a group of genes).
For example, Lh, the luteinizing hormone, has two mem-
bers, CGA and LHB, and CD3 has four members: CD247,
CD3D, CD3E and CD3G. Also, some genes may belong to
more than one molecule. For example, CGA belongs to
Lh, FSH and Cg. As a result, the 25 most interconnected
molecules included a total of 82 genes which were used as
the candidate genes in the association analysis. After ap-
plying quality control checks, 800 SNPs belonging to the
82 IPA-derived candidate genes were included for the total
1368 HNSCC patients (information for the 82 genes and
800 SNPs is listed in Additional file 2).
The results from the candidate gene association ana-

lysis for severe pre-treatment pain in HNSCC patients
are shown in Table 6. The first column shows the mole-
cules identified through the IPA analyses, cell location,
family, number of SNPs belonging to that molecule in



Fig. 2 The most significant network (p value = 10−43) generated by IPA core analysis for cancer pain using 36 focus genes based on cellular
locations of the gene products. Green nodes: focus genes with less than 15 connections; red nodes: molecules with at least 15 connections;
yellow: focus genes with at least 15 connections. Dashed and solid lines represent indirect and direct interactions, respectively
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our study, gene name, chromosome location, and the
SNP with lowest p value belonging to that gene, odds ra-
tio (OR) and p value. The gene mitogen-activated pro-
tein kinase-1 (MAPK1), which belongs to the MAP
kinase family and is also known as extracellular signal-
regulated protein kinase-2 (ERK2), showed the highest
significance (rs8136867, p value = 8.92 × 10−4; OR = 1.33,
95 % confidence interval [CI]: 1.13–1.58). Other genes
with p values less than 0.01 were PIK3C2G (a member
of PI3K [complex], rs10770367, p value = 1.10 × 10−3;
OR = 1.46, 95 % CI: 1.16–1.82), TCRA (a member of TCR,
rs6572493, p value = 2.84 × 10−3; OR = 0.70, 95 % CI:
0.55–0.88), PDGFC (platelet-derived growth factor C,
rs6845322, p value = 4.88 × 10−3; OR = 1.32, 95 % CI:
1.09–1.60), and CD247 (a member of CD3, rs2995082, p
value = 7.79 × 10−3; OR = 0.76, 95 % CI: 0.62–0.93). These
top five genes with germline polymorphisms showing as-
sociation with pre-treatment pain in the HNSCC patients
(Table 6) are listed as non-focus molecules in Table 3.
Focus genes in IPA are the genes identified from the
literature review as being associated with cancer pain phe-
notypes. Therefore, the SNPs that we have identified in
this study as potentially influencing cancer pain have not
been reported elsewhere.
Discussion
Genetic association studies of cancer-related pain have fo-
cused on opioid receptors [3–5, 39, 40], COMT enzyme
[7, 38, 39, 41, 42] and cytokines [10, 12, 16–19, 43]. The
primary aim of our study was to identify novel candidate
genes for cancer pain through a comprehensive literature
search and IPA analysis and then to assess the association
between the common genetic variants within these IPA-
derived genes and cancer pain in HNSCC patients.
Using genotype data from 1368 HNSCC patients, we

found that a germline SNP in MAPK1 (rs8136867, p
value = 8.92 × 10−4; OR = 1.33, 95 % CI: 1.13–1.58)
showed the highest association with cancer pain.
MAPK1 is involved in a number of biochemical signals



Table 3 Molecules with at least 15 connections (i.e., hubs) in
the network depicted in Fig. 2 (i.e., red and yellow nodes),
ranked by the number of connections for each molecule. The
molecules in boldface are focus genes

Cancer paina

IPA symbol # of connections

TNF 64

IFNG 49

IL1B 44

CXCL8 42

IL6 39

Lh 39

FSH 38

NFkB (complex) 38

IL10 31

P38 MAPK 28

ERK1/2 24

PTGS2 24

IL4 23

IL1RN 22

CD3 21

Vegf 20

IL13 19

PI3K (complex) 19

IL12 (complex) 17

NFKB1 17

TCR 17

Akt 16

Fcer1 16

Cg 15

Interferon alpha 15
aIn the network depicted in Fig. 2, 25 out of 140 molecules have at least
15 connections
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and cellular processes such as proliferation, differenti-
ation, transcription regulation and development [44]. It
was identified as a moonlighting protein [45] because
of its ability to act as a transcriptional repressor — an
independent and mechanistically distinct function from
its kinase activity [46]. It is activated by phosphoryl-
ation by an upstream kinase, after which it is translo-
cated to the nucleus to phosphorylate and activate its
nuclear substrate [44]. Dysregulation of MAP kinases
has been associated with cancer development [47–49].
MAPK pathways have also been linked to inflammation
[50, 51] and pain [52–56]. The specific MAPK1 muta-
tion, rs8136867, was reported to be associated with re-
mission in patients with bipolar disorder and major
depressive order, possibly having a potential role in neuro-
plasticity and inflammatory processes [57], and increased
risk of developing MSI+ (micro satellite instability) tumor
[48]. This increased tumor risk may be directly related to
pre-treatment cancer pain since a large tumor can cause
pain, especially if it exerts pressure on nearby nerve fibers.
None of the genetic association studies for pain in cancer
patients (Table 2) used a cohort of patients with HNSCC.
Thus, our findings will be the first report on genetic varia-
tions that may be relevant to cancer pain in HHSCC
patients.
In animal models, various types of nerve injuries in

the dorsal root ganglia (DRG) and dorsal horn of the
spinal cord have been shown to result in neuropathic
pain along with phosphorylation of MAPK family such
as ERK [58–61], p38 [61–63] and JNK [59, 60]. Unlike
p38 and JNK, phosphorylation of ERK due to nerve in-
jury occurs early and lasts long [64]. MEK is an up-
stream kinase in the ERK/MAPK pathway. In animal
models of neuropathic pain, MEK inhibitors have been
shown to be effective in alleviating pain at numerous
time points [64], suggesting that the regulation of ERK/
MAPK signaling may be a promising therapeutic target
for the treatment of neuropathic pain. Further, Ma and
Quirion [64] reviewed the literature, and suggested that
efforts in suppressing multiple pain-related genes in-
volved in neuropathic pain might target the ERK/MAPK
pathway. While our study did not focus on neuropathic
pain, among cancer patients, neuropathic pain is a de-
bilitating sequela of malignancy and its treatment. To
our knowledge, this study is the first to show the import-
ance of these genes in studies of pain severity among
cancer patients.
Other genes that showed potential association with

cancer pain in HNSCC patients included PIK3C2G
(rs10770367, p value = 1.10 × 10−3), TCRA (rs6572493,
p value = 2.84 × 10−3), PDGFC (rs6845322, p value = 4.88 ×
10−3), and CD247 (rs2995082, p value = 7.79 × 10-3).
Although PIK3C2G has been implicated in cancer

development [47, 65–67], the specific genetic vari-
ation PIK3C2G rs10770367, to our knowledge, had
not been associated with any health risk prior to this
study. Genes TCRA and CD247, both of which have
at least 15 connections in the cancer pain network
(Table 3), encode proteins that are essential to the as-
sembly of the T-cell receptor-CD3 complex at the
plasma membrane. The protein encoded by CD247 is
the T-cell receptor zeta; while TCRA gene encodes T
cell receptor alpha locus receptor [68]. The T-cell re-
ceptor recognizes a specific antigen on the surface of
other cells; while CD3 proteins are involved in signal
transduction [69]. Our study showed that CD247
rs2995082 and TCRA rs6572493 SNPs are both im-
portant to pre-treatment pain in HNSCC patients.
TCRA rs6572493 has not yet been associated with
any health risks, but CD247 rs2995082 has been



Table 4 Top canonical pathways discovered by the IPA core analyses of the focus genes reported to be associated with cancer pain
in the literature. The pathways listed have over-representation of focus genes. The canonical pathways were ranked by ratiosa

Canonical pathways p values Ratio

Airway Inflammation in Asthma 3.02E-08 75.0 %

Differential Regulation of Cytokine Production in Macrophages and T Helper Cells by IL-17A and IL-17 F 2.09E-10 27.8 %

Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by IL-17A and IL-17 F 8.13E-10 21.7 %

TNFR2 Signaling 2.34E-09 17.9 %

Role of Cytokines in Mediating Communication between Immune Cells 6.31E-16 17.3 %

IL-10 Signaling 7.94E-17 14.7 %

Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza 1.82E-10 14.6 %

T Helper Cell Differentiation 6.31E-13 11.9 %

Graft-versus-Host Disease Signaling 2.51E-08 11.4 %

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 3.98E-14 11.1 %

IL-6 Signaling 3.16E-18 10.3 %

Hepatic Cholestasis 3.16E-24 10.1 %

PPAR Signaling 1.26E-13 10.0 %

Activation of IRF by Cytosolic Pattern Recognition Receptors 1.95E-09 10.0 %

Role of PKR in Interferon Induction and Antiviral Response 1.20E-06 10.0 %

Communication between Innate and Adaptive Immune Cells 3.98E-12 9.8 %

Role of IL-17 F in Allergic Inflammatory Airway Diseases 1.32E-06 9.8 %

HMGB1 Signaling 3.16E-16 9.3 %

Hematopoiesis from Pluripotent Stem Cells 1.78E-06 9.1 %

TREM1 Signaling 4.68E-09 8.7 %

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 2.51E-14 8.4 %

Allograft Rejection Signaling 2.51E-06 8.3 %

Crosstalk between Dendritic Cells and Natural Killer Cells 4.37E-10 7.9 %

CD40 Signaling 1.74E-07 7.8 %

Type I Diabetes Mellitus Signaling 3.16E-11 7.6 %

IL-15 Signaling 2.00E-07 7.6 %

LXR/RXR Activation 1.58E-12 7.4 %

Role of IL-17A in Arthritis 4.07E-06 7.4 %

Toll-like Receptor Signaling 3.09E-07 6.9 %

Induction of Apoptosis by HIV1 5.75E-06 6.8 %

PXR/RXR Activation 7.59E-06 6.4 %

Hepatic Fibrosis/Hepatic Stellate Cell Activation 2.00E-15 6.1 %

Atherosclerosis Signaling 3.63E-09 5.8 %

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 6.31E-15 5.6 %

Dendritic Cell Maturation 3.98E-11 5.3 %

NF-κB Signaling 3.98E-11 5.3 %

p38 MAPK Signaling 1.12E-07 5.1 %

Glucocorticoid Receptor Signaling 1.26E-15 5.0 %

Acute Phase Response Signaling 1.20E-09 4.8 %

LPS/IL-1 Mediated Inhibition of RXR Function 2.29E-10 4.3 %

Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis 2.00E-13 4.2 %

Granulocyte Adhesion and Diapedesis 3.31E-08 4.2 %
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Table 4 Top canonical pathways discovered by the IPA core analyses of the focus genes reported to be associated with cancer pain
in the literature. The pathways listed have over-representation of focus genes. The canonical pathways were ranked by ratiosa

(Continued)

FXR/RXR Activation 4.90E-06 4.0 %

IL-12 Signaling and Production in Macrophages 6.17E-06 3.8 %

PPARα/RXRα Activation 8.71E-07 3.6 %

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 1.38E-06 3.4 %
aRatio is calculated as the number of focus genes included in a canonical pathway divided by total number of genes that make up the canonical pathway
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associated with celiac disease [70] and rheumatoid
arthritis [71, 72].
PDGCF-C is a gene that encodes platelet-derived

growth factor C protein. Members of the PDGF family
are mitogens for cells of mesenchymal origin [73] and
are regulators of cell migration, transformation, survival
and apoptosis [65]. To our knowledge, PDGFC rs6845322
has not been associated with any health risk to date.
MAPK1 rs8136867, PIK3C2G rs10770367, TCRA

rs6572493, PDGFC rs6845322, and CD247 rs2995082 are
all located in introns [74], the non-coded sequence, of
their respective genes. Introns, which are usually present
in most eukaryotic genes, are removed by splicing such
that the mutations in this sequence were usually thought
Table 5 Top 20 diseases and functions discovered by IPA core analy
in the literaturea

Categories

Lipid metabolism, small molecule biochemistry

Inflammatory disease

Drug metabolism, lipid metabolism, small molecule biochemistry

Lipid metabolism, molecular transport, small molecule biochemistry

Gastrointestinal disease, inflammatory disease

Lipid metabolism, molecular transport, small molecule biochemistry

Lipid metabolism, small molecule biochemistry

Lipid metabolism, small molecule biochemistry

Gastrointestinal disease, inflammatory disease, inflammatory response

Connective tissue disorders, immunological disease, inflammatory
disease, skeletal and muscular disorders

Connective tissue, inflammatory disease, skeletal and muscular disorders

Connective tissue disorders, inflammatory disease, skeletal and muscular diso

Inflammatory response

Immunological disease

Infectious disease

Inflammatory response

Lipid metabolism, molecular transport, small molecule biochemistry

Infectious disease

Inflammatory disease, organismal injury and abnormalities, respiratory disease

Cell-to-cell signaling and interaction, hematological system development
and function, immune cell trafficking, inflammatory response
aRanked by p values
not to alter the expressed proteins. However, recent evi-
dence has suggested that genomic variants in the noncod-
ing sequences (introns) can lead to deleterious gene
transcript variants [75] or to alterations in gene expression
levels [76] that can lead to disease or increased risk of dis-
ease. For instance, intron variants of the p53 gene were as-
sociated with ovarian cancer risk [77], intronic SNP
rs8048002 in the MHC class II transactivation gene
(MHC2TA) was associated with increased risk of inflam-
matory disease [78], and intronic SNP rs9282860 in
serine-threonine kinase 11 is a genetic risk factor in
women with multiple sclerosis [79].
Among the limitations of this study is that the sizes of

the networks reflect the amount of literature available on
ses of focus genes reported to be associated with cancer pain

Function annotation p Value

Synthesis of prostaglandin 1.50E-24

Chronic inflammatory disorder 3.74E-24

Synthesis of prostaglandin E2 4.34E-24

Concentration of eicosanoid 2.19E-21

Inflammatory bowel disease 1.03E-20

Concentration of lipid 4.13E-20

Fatty acid metabolism 6.51E-20

Synthesis of lipid 1.01E-19

Ulcerative colitis 1.74E-19

Rheumatoid arthritis 1.84E-19

Rheumatic disease 4.11E-19

rders Arthritis 7.15E-19

Inflammation of organ 1.19E-18

Systemic autoimmune syndrome 1.57E-18

Sepsis 3.20E-18

Inflammation of body region 4.40E-17

Concentration of prostaglandin 4.51E-16

Dengue hemorrhagic fever 6.48E-16

Acute respiratory distress syndrome 1.53E-15

Activation of dendritic cells 2.59E-15



Table 6 Results of genetic associated analysis for pre-treatment pain in 1368 head and neck cancer patients (206 severe pain cases
and 1162 non-severe pain controls), using the hubs (most interconnected molecules) obtained from IPA core analysis as the
candidate molecules. The IPA symbol represents either a gene or a group of genes. The p value represents the most significant
p value within a gene or a gene group. The molecules in boldface are focus genes

IPA symbol Location Family # of SNPs Genes Chr rs# OR P value

TNF Extracellular space Cytokine 3 TNF 6 rs1800630 1.20 1.78E-01

IFNG Extracellular space Cytokine 2 IFNG 12 rs2069727 0.84 8.85E-02

IL1B Extracellular space Cytokine 4 IL1B 2 rs16944 0.77 3.79E-02

CXCL8 Extracellular space Cytokine 1 CXCL8 4 rs2227543 1.09 3.78E-01

IL6 Extracellular space Cytokine 7 IL6 7 rs2069835 1.45 8.21E-02

Lh Plasma membrane Complex 5 CGA 6 rs9359730 1.26 3.48E-02

FSH Plasma membrane Complex 4 CGA 6 rs9359730 1.26 3.48E-02

NFkB (complex) Nucleus Complex 22 NFKB2 10 rs7897947 1.29 6.78E-02

IL10 Extracellular space Cytokine 4 IL10 1 rs3021094 1.11 6.08E-01

P38 MAPK Cytoplasm Group 33 MAPK1 22 rs8136867 1.33 8.92E-04

ERK1/2 Cytoplasm Group 13 MAPK1 22 rs8136867 1.33 8.92E-04

PTGS2 Cytoplasm Enzyme 3 PTGS2 1 rs5275 1.23 5.35E-02

IL4 Extracellular space Cytokine 5 IL4 5 rs2243248 0.81 3.19E-01

IL1RN Extracellular space Cytokine 12 IL1RN 2 rs17042917 0.77 1.43E-01

CD3 Plasma membrane Complex 44 CD247 1 rs2995082 0.76 7.79E-03

Vegf Extracellular space Group 47 PDGFC 4 rs6845322 1.32 4.88E-03

IL13 Extracellular space Cytokine 5 IL13 5 rs1881457 0.84 2.44E-01

PI3K (complex) Cytoplasm Complex 196 PIK3C2G 12 rs10770367 1.46 1.10E-03

IL12 (complex) Extracellular space Complex 10 IL12B 5 rs730691 0.77 1.68E-02

NFKB1 Nucleus Transcription regulator 9 NFKB1 4 rs1609798 1.20 9.42E-02

TCR Plasma membrane Complex 378 TCRA 14 rs6572493 0.70 2.84E-03

Akt Cytoplasm Group 33 AKT2 19 rs892120 1.35 3.15E-02

Fcer1 Plasma membrane Complex 15 FCER1G 1 rs11587213 0.68 1.68E-02

Cg Other Complex 8 CGA 6 rs9359730 1.26 3.48E-02

Interferon alpha Extracellular space Group 14 IFNA7 9 rs4977686 1.20 7.51E-02
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the focus genes. Also, edges are simplified in that IPA desig-
nates only a single edge between each pair of molecules in
a network regardless of the number of interactions the two
molecules share. Furthermore, the identified association be-
tween MAPK1/ERK2 should be viewed as preliminary and
exploratory. Multiple comparison adjustment was not per-
formed in this analysis, and none of the associations re-
ported would be statistically significant if such adjustments
were performed. However, as the analysis in this study was
considered as preliminary and exploratory, the multiple
comparison adjustments are usually not required [80]. Des-
pite these limitations however, the present study identified
novel, potentially biologically meaningful candidate genes
associated with cancer pain in HNSCC patients. These
genes, though requiring further validation in future studies
using independent data as well as other cancer sites, may
allow researchers to not only identify a subgroup of the pa-
tient population and higher susceptibility for cancer
associated pain and symptoms, but may also provide insight
into the etiology of cancer associated pain. This in turn can
be used to inform clinical decision making and help de-
velop targeted treatment strategies for this subgroup.

Conclusions
In conclusion, IPA is able to use large-scale information
to produce comprehensive networks of genes and under-
lying biological pathways implicated in a phenotype. Fu-
ture studies should aim to target these molecules and
pathways while also minimizing adverse effects due to a
lack of specificity.

Availability of data and materials
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