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Study on LOC426217 as a candidate gene
for beak deformity in chicken
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Abstract

Background: The beak deformity (crossed beaks) was found in some indigenous chickens of China, such as
Beijing-You (BJY), Qingyuan Partridge, and Huxu Chickens. Birds with deformed beaks have reduced feed intake and
drinking, impeded growth rate, and poor production performance. Beak deformity reduces the economy of poultry
industry and affects animal welfare as well. The genetic basis of this malformation remains incompletely
understood. LOC426217, also named claw keratin-like, was the most up-regulated gene in the deformed beaks from
a previous digital gene expression (DGE) analysis and was selected as an important candidate gene for further
analysis.

Results: In the present study, quantitative real-time PCR (qRT-PCR) was firstly performed to determine the
expression pattern of LOC426217 gene in deformed and normal beaks to verify the DGE results. Tissue-specific
expression profile of this gene in 14 tissues was also determined using qRT-PCR. The LOC426217 was amplified from
the genomic DNA of 171 deformed and 164 normal beaks, and sequenced to detect the single nucleotide
polymorphisms (SNPs). The results showed that LOC426217 was significantly high-expressed in the deformed beaks,
which was in good agreement with the DGE results. This gene was specifically high-expressed in beaks than other
tissues. Eight SNPs were detected in LOC426217: -62G > T, 24 T > C, 36G > C, 192A > T, 204C > T, 222 T > C, 285G > T,
and 363 T > C. Genotype frequency of G-62 T, T24C, G36C, T222C, and T363C loci was significant different between
deformed and normal beaks. Haplotype analysis revealed one block with SNPs T24C and G36C, and one block with
SNPs A192T, C204T, T222C, and G285T in normal birds, while the block with SNPs G36C and A192T in deformed
ones.

Conclusions: It was concluded from these results that the over-expression of LOC426217 in the beak maybe related
to the malformation. The polymorphisms of LOC426217 gene were associated with the beak deformity trait where
the SNPs of G-62 T, T24C, G36C, T222C, and T363C loci maybe used as markers. The specific haplotype block in
deformed birds may be a potential linkage marker for this trait.
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Background
The beak is an external structure of birds, consisting of
the upper and lower mandibles covered with a thin kerati-
nized layer of epidermis [1]. It is used for many important
activities such as feeding, drinking, fighting, and preening.
In addition to striking morphological differences between
species, beak deformities of different forms (noticeably
elongated, crossed, bent at right angles) have been docu-
mented in many wild birds [2–7]. Frequencies of 1 % to

3 % of beak deformity (normally a crossed beak) were
found in various indigenous chickens of China, such as
Beijing-You (BJY) (studied here), Silkies, Qingyuan Par-
tridge, and Huxu Chickens. Chickens with deformed
beaks have reduced feed intake and growth rate. There-
fore, beak deformity represents an economic as well as an
animal welfare problem in poultry industry. According to
our observations in a BJY population, in the absence of
known environmental factors contributing to the malfor-
mation, birds with deformed beaks present consistently in
each generation and cannot be eliminated from a popula-
tion simply on the basis of the phenotype. This indicated
the genetic effects underlying this trait. Studies have been
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performed to identify the teratogenic genes or molecular
genetic background of beak deformity. Previously recog-
nized genetic factors associated with beak deformity
include some knwon genes such as fibroblast growth fac-
tor 8 (FGF8) [8], bone morphogenetic protein 4 (BMP4)
[9–11], calmodulin (CaM) [12], and ALX homeobox 1
(ALX1) [13]. The over-expression of homeobox A1
(HOXA1) and homeobox D3 (HOXD3) may result in beak
deformity in chicks [14].
Sets of differently expressed genes in the deformed

and normal beaks have been detected using digital gene
expression (DGE) profile analysis based on high-
sequencing technology. Of these genes, LOC426217, also
known as claw keratin-like gene, was the most up-
regulated in the deformed beak (log2-Ratio (deformed/
normal) = 10.91) [15]. Located on GGA 25, LOC426217
is a member of the keratin family, containing 417 base
pairs with only one exon (Fig. 1). Keratin is crucial for
maintaining normal cell morphology involved in the
cytoskeleton remodeling keratin filaments and cytoskel-
etal signaling pathways. Change of its structure results
in dysmorphic cells [16]. The cytoskeleton is a complex
of intracellular proteins that contribute to shape, sup-
port, and movement of cells [17]. Up to now, less study
was reported about this gene in chickens. Although
highlighted in the DGE analysis, further study of this
gene is still needed to verify its roles in beak
malformation.
In the present study, qRT-PCR was used to detect the

relative expression of LOC426217 gene in the deformed
and normal beaks, to verify the results of DGE profiling.
Tissue expression profile of this gene was also deter-
mined in 14 tissues of the birds. Eventually, LOC426217
was amplified and sequenced to seeking the SNPs and
haplotypes related with the beak malformation.

Methods
Animals and samples collection
The Institutional Animal Care and Use Committee at
Institute of Animal Science, Chinese Academy of Agri-
cultural Sciences (IAS, CAAS) approved all procedures

involving the use of animals. All efforts were made to
minimize the suffering of animals following the animal
care guidelines [18]. The animals used in this study
came from a pure-line stock of a local breed (Beijing-
You) kept by IAS, CAAS (Beijing, China). They were in-
cubated contemporaneously and housed under the same
conditions.
The lower mandibles of the beaks were collected from

18 BJY chickens of 56 days of age: 9 with crossed beaks
and 9 with normal beaks. Total RNA of the lower man-
dibles of the crossed and normal beaks above was col-
lected for the verification of DGE profiling results using
quantitative real-time PCR (qRT-PCR).
Three normal birds of 56 days of age were killed by

stunning and exsanguination. Tissues samples including
bursa of fabricius, beak, brain, breast, feather, heart, kid-
ney, thigh, liver, lung, skin, small intestine, stomach, and
testicle (50–100 mg) were rapidly collected and snap-
froze in liquid nitrogen and storage at -80 °C. The RNA
of these samples was used to determine the tissue ex-
pression profile of LOC426217.
Blood samples were collected from the brachial vein

by venipuncture from 171 beak- deformed birds (de-
formed) and 164 normal ones (control). Based on the
case-control study design, we selected these birds ac-
cording to the phenotype of the birds without family
structure. The beak-deformity birds were collected from
two generations. The normal birds were selected ran-
domly from the same generation. DNA was isolated
from the blood samples and stored at -20 °C for the de-
tection of SNPs located in LOC426217 gene.

DNA and RNA extraction and reverse transcription (RT)
Genomic DNA (gDNA) was extracted from blood sam-
ples using phenol-chloroform. Total RNA was isolated
at 4 °C using the Trizol reagent (Invitrogen, USA). Any
residual gDNA and protein were removed with Dnase I

Fig. 1 The molecular structure map of LOC426217 gene. Note: White
box: promoter region; black box: exon encoding amino acids;
Number: number of base pairs

Table 1 Gene-specific primers used in PCR

Gene Primer sequence Product
length
(bp)

Tm
(°C)

GenBank
No.

LOC426217 F: AGTCCTCTATCCAGCTTCCT 806 60 NC_006112.2

R: GAGTAGGCAGTCAGAGCTTG

Table 2 Gene-specific primers used in qRT-PCR

Gene Primer sequence Product
length
(bp)

Tm
(°C)

GenBank
No.

LOC426217 F: CACCGTGGTCACCTTCCCCG 157 60 XM_423880

R: GCCTCCATAGCCACCAAAAC

β-actin F: GAGAAATTGTGCGTGACATCA 152 60 NM_205518

R: CCTGAACCTCTCATTGCCA
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(TaKaRa, Japan) and RNA clean kit (TIANGEN, China).
The purified RNA was dissolved (200-400 ng/mL,
OD260/OD280 = 1.8–2.0), and stored at -80 °C. Total
RNA was used for RT (in 20 μL final volume) following
the manufacturer's instruction (Promega, USA). The
cDNA was stored at -80 °C for subsequent qRT-PCR.

PCR amplification and qRT-PCR
PCR amplification was performed using PCR Gene
Amplifier (Bio-Rad, USA) in a total volume of 25 μL
which contains 12 μL of 2 × Taq PCR StarMix (GenStar,

China), 1 μL (10 pmol) of each primer (Table 1), 1 μL of
gDNA (50 ng) and 10 μL of ddH2O. After an initial de-
naturing for 2 min at 95 °C, there were 35 cycles of
amplification (94 °C for 30 s, 60 °C for 30 s, and 72 °C
for 90 s) and extension for 5 min at last. PCR products
were detected by 1 % agarose gel electrophoresis for
15 min 120 V, stained with ethidium bromide, examined
under UV light, and photographed. The PCR products
were then sequenced by BGI (Beijing, China).
To validate the DGE results, qRT-PCR was performed

to determine the expression of LOC426217 in the 9 de-
formed and 9 normal beaks using the ABI 7500 Real-
time Detection System (Applied Biosystems, USA) and
TaKaRa DRR018A reagents. Each 20 μL PCR mixture
contained10 μL of SYBR Premix Ex Taq™ II, 0.8 μL (10
pM) of each primer (Table 2), 0.4 μL of ROX Reference
Dye II (50×), 2 μL of cDNA (100 ng) and 6 μL of
ddH2O. After an initial denaturing for 30 s at 95 °C,
there were 40 cycles of amplification (95 °C for 5 s and
60 °C for 32 s), followed by thermal denaturing to gener-
ate melting curves to verify amplification specificity. β-
actin was amplified in the same plates as endogenous
control. Samples were assayed in triplicate for standard
curves. PCR efficiency of the LOC426217 gene and β-
actin was consistent. cDNA from normal beaks served
as a standard control for tissue-specific expression pro-
file study. The amplification efficiency of transcripts of
interest and the internal standard (β-actin) were consist-
ent. Dissociation curves verified that amplification was
specific.

SNPs filter and genotyping
PCR amplification product of LOC426217 gene was then
directly sequenced by BGI company (Beijing, China)

Fig. 2 Relative expression of LOC426217 in 9 deformed and 9
normal beaks. Note: * means significant difference between two
groups (P < 0.05)

Fig. 3 Relative expression of LOC426217 gene in 14 tissues of the chicken
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Fig. 4 Sequencing map of the mutation loci in LOC426217 in chicken

Table 3 Genotypes of the birds used for qRT-PCR analysis for validation of Digital Gene Expression results

Trait No. SNP Loci

G-62 T T24C G36C A192T C204T T222C G285T T363C

Deformed 1 TT TC GC AT CT TT GT CC

2 TT TC GC AT CT TT GT TT

3 TT CC CC AA CT TC GG TT

4 GT TC GC AA CC TC GG TT

5 GT TC GC AA CC TC GG TT

6 TT TT GG AA TT TT GG TT

7 TT TT GG AT CC TT GT CC

8 TT TT GG AT CC TT GT TT

9 GT TC GC AT CC TC GT TT

Normal 10 TT TC GC AT CC TC GT TT

11 TT CC CC AA TT TT GG TT

12 TT TC GC AA CT TC GG TT

13 TT TC GC AA TT TT GG TT

14 TT TC GC AT CT TT GT CC

15 TT TC GC AT CT TT GT CC

16 TT TC GC AA CT TC GG TT

17 TT CC CC AA CT TC GG TT

18 TT TC GC AT CC TC GT TT
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using Sanger sequencing methods [19]. The SNPs and
amino acids were determined and filtered by the soft-
ware DNAStar (Version 5.01).

Statistical analysis
The relative abundance of transcripts was calculated
from 2−ΔΔCT [20]. All data presented graphically are
means ± SEM. The significance level was P < 0.05 or P <
0.01. Student’s t-tests were used to evaluate the relative
expression differences of LOC426217 between the RNA
samples of deformed and normal beaks. The ANOVA
procedure of SAS 8.0 was used to assess the differences
expression of LOC426217 in all the tissues. All SNPs
were checked for Hardy-Weinberg Equilibrium (HWE)
in both groups (P > 0.05 means equilibrium). Allele fre-
quency, genotype frequency, and polymorphism infor-
mation content (PIC, PIC < 0.25: low polymorphism;
0.25 < PIC < 0.5: moderate polymorphism; PIC > 0.5: high
polymorphism) were calculated by PopGene (Version
1.31). Chi-square tests were used to evaluate the
genotype frequency differences between deformed and

normal beaks. Benjamini & Hochberg method was used
for the Bonferroni correction [21]. Linkage Disequilib-
rium (LD) pattern for the SNPs genotyped was plotted
using Haploview (Version 4.2). The sliding window
method was used to generate different haplotypes be-
tween two groups [22, 23].

Results
Verification for LOC426217 gene of DGE results
To verify the previous DGE analysis, where LOC426217
was the most up-regulated in the deformed beaks, qRT-
PCR was used to estimate the expression of this gene in 9
deformed and 9 normal beaks. As shown in Fig. 2, the
relative expression of LOC426217 in deformed beaks was
significantly higher than that in normal ones (P < 0.05).
This was in good agreement with the DGE analysis.

Tissue expression profile of LOC426217
As shown in Fig. 3, LOC426217 gene was hardly
expressed in brain, heart, bursa, or small intestine. The
relative expression in beak was significantly higher than

Table 4 Genetic diversity analysis of LOC426217 in normal birds

Loci Genotype Genotype frequency (n) Allele Allele frequency χ2 value (P value) PIC

G-62 T GG 0.00(0) GT 0.130.87 3.837 (0.050) 0.205

GT 0.27 (44)

TT 0.73 (120)

T24C TT 0.36 (59) TC 0.650.35 10.32 (0.001)* 0.353

TC 0.57 (94)

CC 0.07 (11)

G36C GG 0.48 (78) GC 0.720.28 5.48(0.019)* 0.324

GC 0.48 (79)

CC 0.04 (7)

A192T AA 0.53 (86) AT 0.760.24 10.58 (0.001)* 0.301

AT 0.46 (76)

TT 0.01 (2)

C204T CC 0.70 (115) CT 0.830.17 0.13 (0.721) 0.237

CT 0.27 (44)

TT 0.03 (5)

T222C TT 0.55 (90) TC 0.760.24 6.71(0.0096)* 0.295

TC 0.43(71)

CC 0.02 (3)

G285T GG 0.54(89) GT 0.760.24 9.17 (0.0025)* 0.295

GT 0.45 (73)

TT 0.01(2)

T363C TT 0.70(115) TC 0.790.21 36.58 (<0.0001)* 0.277

TC 0.18 (29)

CC 0.12(20)

Note: χ2 value means the test values of different genotypes to Hardy-Weinberg equilibrium. * (P < 0.05) means the loci were not in agreement with the
Hardy-Weinberg equilibrium
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that in other tissues (P < 0.01). The results revealed that
this gene maybe specifically expressed in beak tissue. In
order to seek the structural changes of this gene, DNA
sequencing was carried out subsequently.

DNA sequencing and SNPs detection
LOC426217 gene of 171 beak-deformed and 164 normal
birds was amplified and sequenced. Eight SNPs were de-
tected, including one locus in promoter region: -62G > T,
and seven loci in coding region: 24 T > C, 36G > C,
192A > T, 204C > T, 222 T > C, 285G > T, and 363 T > C
(Fig. 4). The loci in coding region were synonymous muta-
tions resulting with no amino acid changing. These SNPs
were presented in both beak-deformed and normal birds.
The 18 birds used in the qRT-PCR analysis for DGE verifi-
cation were also sequenced and their genotypes were
shown in Table 3 and Additional file 1: Table S1.

Genetic diversity analysis
Genetic diversity was analyzed by PopGene (Version
1.31). All SNPs were firstly checked for HWE. In the

normal birds (n = 164), T24C, G36C, A192T, T222C,
G285T, and T363C were not in agreement with the
HWE (P < 0.05), while in the birds with a deformed
beak (n = 171), T24C, G285T, and T363C were not in
agreement with the HWE. Two loci (G-62 T and
C204T) of normal beaks and two loci (G-62 T and
T363C) of deformed ones were low polymorphism
(PIC < 0.25) (Tables 4 and 5).

Genotype frequency differences in the beak-deformed
and normal birds
Chi-square tests were used to evaluate the genotype fre-
quency differences of SNP loci in LOC426217 gene be-
tween two groups with a Bonferroni correction for the
P-values. As shown in Table 6, the genotype frequency
of G-62 T locus showed significant difference between
two groups (P < 0.05), while the genotype frequencies of
T24C, G36C, T222C and T363C loci showed highly sig-
nificant differences (P < 0.01). There was no significant
difference for the rest SNPs (P > 0.05).

Table 5 Genetic diversity analysis of LOC426217 in beak-deformed birds

Loci Genotype Genotype frequency (n) Allele Allele frequency χ2 value (P value) PIC

G-62 T GG 0.02 (3) GT 0.100.90 1.37 (0.242) 0.163

GT 0.16(28)

TT 0.82 (140)

T24C TT 0.24(41) TC 0.5350.465 5.80 (0.016)* 0.374

TC 0.59(101)

CC 0.17 (29)

G36C GG 0.32 (54) GC 0.5940.406 3.77 (0.050) 0.366

GC 0.55(95)

CC 0.13 (22)

A192T AA 0.56(96) AT 0.7600.240 1.33 (0.249) 0.298

AT 0.40 (68)

TT 0.04(7)

C204T CC 0.59(101) CT 0.7810.219 1.98 (0.160) 0.284

CT 0.38(65)

TT 0.03 (5)

T222C TT 0.50 (85) TC 0.6990.301 0.34 (1.562) 0.332

TC 0.40(69)

CC 0.10 (17)

G285T GG 0.57 (97) GT 0.7720.228 4.38 (0.036)* 0.290

GT 0.41(70)

TT 0.02(4)

T363C TT 0.82 (140) TC 0.8480.152 104.165 (<0.0001)* 0.225

TC 0.06 (10)

CC 0.12(21)

Note: χ2 value means the test values of different genotypes to Hardy-Weinberg equilibrium.* (P < 0.05) means the loci were not in agreement with the
Hardy-Weinberg equilibrium
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Haplotype analysis
In the normal birds, two haplotype blocks of
LOC426217 were identified: one block with SNPs T24C
and G36C, and one block with SNPs A192T, C204T,
T222C, and G285T. In the birds with a deformed beak,
one block with SNP G36C and A192T was identified
(Table 7 and Fig. 5). The haplotype blocks of deformed
birds were different from those of the normal ones.

Discussion
The molecular genetic mechanism underlying beak de-
formity is likely to be very complex. Beak deformities of
different forms (noticeably elongated, crossed, bent at
right angles) have been documented in many wild birds.
The molecular mechanism of beak deformity trait is not

clear yet. For the wild birds, it is difficult to obtain the
individuals for genetic study. Beak deformity was also
found in various indigenous chickens and it is easy to
collect individuals. This made the chicken a perfect
model for the genetic study of this defect. Based on the
previous DGE profiling and bioinformatics analyses, we
identified a cluster of differentially expressed genes
(DEGs) in the deformed and normal beaks. Some of the
DEGs were quite extreme, especially the LOC426217
gene in the present study.

Validation and tissue expression profile
In order to validate the reliability and accuracy of
DGE results, qRT-PCR was performed. The results
showed that the expression of LOC426217 in the de-
formed beaks was significantly higher than that in the
normal beaks, which was in great agreement with
DGE analysis. The result of tissue expression profile
also revealed that this gene was specifically expressed
in beak tissue. LOC426217 is a member of the keratin
family [24]. Keratin is a key gene family for maintain-
ing normal cell morphology [16]. Variation of keratin
structure can lead to beak deformity [25]. It is also
an intermediate filament protein that has essential
functions in maintaining the structural integrity of
epidermis and its appendages [26], presumably includ-
ing the beak. In addition, keratin is the main compos-
ition of the chicken beak. This may be the main
reason for its high expression in beak tissue. According to
our early observation of beak anatomy, the lower mandi-
bles of the beaks were abnormal/asymmetry. It was re-
ported that avian keratin disorder could result in gross
over growth of the rhamphotheca [7]. The beak deformity
caused by the excessive growth of one side of the lower
mandibles maybe a result of abnormal high expression of
LOC426217.

SNPs and haplotypes associated with beak deformity
Based on the case-control study design, the investi-
gated birds used for sequencing were selected from
the pure line BJY population according to the beak
phenotype of the birds with no family structures.
Since the percentage of beak-deformity birds in the
chicken population was 1 %-3 %, it was not easy to
collect enough birds for gene sequencing. The beak-
deformity birds were collected from two generations
(about 5000 birds in each generation) and the nor-
mal birds were selected randomly from the same
generation.
Using direct sequencing, eight SNPs located in the

LOC426217 gene were detected, including one locus in
promoter region and seven loci in coding region. These
loci were found in both birds with deformed and normal
beaks. Four loci (T24C, G36C, T222C, and T363C) were

Table 6 Genotypes frequency comparison of all the loci
between beak-deformed and normal birds

Loci Trait Genotype χ2

value
P-value Corrected

P-valueAA AB BB

G-62 T normal deformity 0 44 120 7.951 0.019 0.030*

3 28 140

T24C normal deformity 59 94 11 11.450 0.003 0.008**

41 101 29

G36C normal deformity 78 79 7 13.453 0.001 0.008**

54 95 22

A192T normal deformity 86 76 2 3.627 0.163 0.186

96 68 7

C204T normal deformity 115 44 5 4.809 0.090 0.120

101 65 5

T222C normal deformity 90 71 3 9.829 0.007 0.014*

85 69 17

G285T normal deformity 89 73 2 0.928 0.629 0.629

97 70 4

T363C normal deformity 115 29 20 11.591 0.003 0.008**

140 10 21

Note: χ2 value means the tested values of different genotypes between two
groups. * means significant difference between two groups (P < 0.05). **
means highly significant difference between two groups (P < 0.01). Corrected
P-value using Benjamini & Hochberg method [21] was used for the
Bonferroni correction

Table 7 Haplotype frequencies in the normal- and deformed-
beaks birds

Normal Deformed

Block1 Block2 Block

Haplotype Frequency Haplotype Frequency Haplotype Frequency

TG 0.646 ACTG 0.357 CA 0.406

CC 0.284 ACCG 0.235 GA 0.354

CG 0.070 TCTT 0.235 GT 0.240

ATTG 0.165
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previously released on the database of NCBI (http://
www.ncbi.nlm.nih.gov) while the rest four SNPs found
in this study were new. Furthermore, five SNPs, individ-
uals with different genotypes showed significant differ-
ences between beak-deformed and normal birds (P <
0.05). Previous research demonstrated that promoter
mutation is a kind of the mutations which can enhance

or reduce the expression level of a gene and lead to dif-
ferent phenotypes [27, 28]. In this current study, one
SNP (-G62T) was detected in the promoter region and
the genotype frequency was significant different between
two groups. This mutation could possibly affect the
start, expression time and level of this gene. As shown
in Table 3, the genotype of 9 normal birds were all TT,

Fig. 5 Haplotype blocks of LOC426217 in the normal (a) and deformed (b) beaks birds. SNP1: G-62 T; SNP2: T24C; SNP3: G36C; SNP4: A192T; SNP5:
C204T; SNP6: T222C; SNP7: G285T; SNP8: T363C. In the normal birds, two haplotype blocks were identified: one block with SNPs T24C and G36C,
and one block with SNPs A192T, C204T, T222C, and G285T. In the birds with a deformed beak, one block with SNP G36C and A192T
was identified
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while 3 out of the 9 beak-deformed were TG. Further
validation study with larger sample size is needed to val-
idate the mRNA expression profile of different geno-
types. Similarly, the mutations in coding region are also
very important. As we all know, exon is a nucleotide se-
quence in DNA that carries the code for the final mRNA
molecule and thus defines the amino acid sequence dur-
ing protein synthesis. If the base pairs changed in coding
region, the structure and function of protein could pos-
sibly change, such as missense mutation or silent muta-
tion [29–32]. In this study, all the loci in coding region
were synonymous mutations with no amino acid and
protein changing. Synonymous mutations, which do not
alter the protein sequence, have also been shown to
affect protein function [33, 34] and play key roles in hu-
man diseases [35]. Therefore, the mutations detected
here may also affect this gene function. Sometimes, the
phenotype altering or diseases occurring was not associ-
ated with one single SNP changing but related to several
SNPs. Global patterns of DNA sequence variation (hap-
lotypes) defined by common SNPs have important impli-
cations for identifying disease and traits [36, 37]. A
previous study showed that the ALX1 haplotype has
contributed to diversification of beak shapes among the
Darwin’s finches and, thereby, to an expanded utilization
of food resources [13]. In this present study, different
haplotypes were analyzed between two groups. It indi-
cated that the beak deformity trait might be related to
the specific haplotype block which was only existed in
beak-deformed chickens. To sum up, SNPs and haplo-
types described here were interesting and worthy of fur-
ther study.

Conclusions
To the best of our knowledge, this is the first time that
LOC426217 was studied as an important candidate gene
for beak deformity in birds. The over-expression of
LOC426217 may be the cause of beaks malformation.
The genotype frequency of SNPs at G-62 T, T24C,
G36C, T222C, and T363C loci showed significant differ-
ences between deformed and normal birds, and might
be used as candidate SNP markers for this trait. The
specific haplotype block in the deformed group could be
served as a potential linkage marker for this trait. Fur-
ther functional verification studies like over-expression
or RNA interfere of LOC426217 during the embryonic
development are required to reveal its roles in the beak
malformation.
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