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Abstract

Background: Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious
diseases affecting soybean (Glycine max (L) Merr.) production all over the world. The most economical and
environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties.

Results: We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against
eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei,
Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene
postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently,
association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP)
markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were
located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL)
regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes
related to resistance.

Conclusion: This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection,
which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent
database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with
resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate
genes may be useful for exploring the mechanism underlying P. sojae resistance.
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Background

Phytophthora root and stem rot (PRR) caused by the
oomycete pathogen Phytophthora sojae Kaufmann &
Gerdemann brings about extensive economic losses
worldwide [1]. The pathogen infects soybean throughout
the growing season, resulting in seedling damping-off
and root and stem rotting of mature plants. P sojae iso-
lates are classified into pathotypes based on the reac-
tions of soybean differentials carrying resistance genes,
and more than two hundred pathotypes of P. sojae have
been identified worldwide to date [2, 3]. In China, an
aboriginal P. sojae isolate was first found in 1989 in
Heilongjiang province [4, 5]. Since then, the emergence
of new races and their virulence diversity have been re-
ported continuously in other major soybean production
areas around the Huanghuai valley and in southern
China [6], implying that PRR is a potential threat to
Chinese soybean production.

Deployment of Rps (resistance to P. sojae) genes in
soybean cultivars has been an effective method of con-
trolling PRR [7] because Rps genes mediate complete or
race-specific resistance. To date, at least twenty Rps
genes that protect against P. sojae infection have been
identified in soybean [8—14]. The efficacies of these Rps
genes are dependent on the presence of corresponding
avirulence (Avr) genes in the pathogen. The Rps genes
recognize Avr genes secreted from P. sojae in a gene-for-
gene model, thus activating the plant resistant response
[15, 16]. Under the theory of pathogen-host coevolution
[17], P. sojae is under strong selection pressure, and new
pathotypes are constantly evolving. Therefore, the Rps
genes is easily overcome by changes in the virulence
of P. sojae [16].

Normally, a single Rps gene is effective for only 8 to
15 years [18]. The first Rps gene Rpslk was identified in
1957 [8]; to date, no single Rps gene has been found to
confer resistance to all P. sojae isolates, and new virulent
pathotypes of P. sojae have continued to emerge. Mining
of novel resistance genes has thus become an urgent pri-
ority in soybean resistance breeding. Many surveys on
resistant germplasm characterization and resistance gene
discovery in the Chinese soybean have been performed
[19-22]. In these surveys, soybean germplasm accessions
were randomly selected and concentrated in certain re-
gions, such as central China [19], southern China [20]
and the Huanghuai region [21, 22].

Chinese soybean germplasm resources are very vast,
making it difficult to thoroughly evaluate Phytophthora
resistance; so far, no systematic screening of countrywide
soybean germplasm for resistance has been carried
out. The soybean mini core collection is a preferred
choice for efficient exploration of variations in genetic
resources because it represents 1 % of the entire
GeneBank collection but 94.5 % of the soybean
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phenotypic diversity and 63.5 % of the genetic diver-
sity of the collection [23]. The soybean mini core
collection has been used to evaluate desirable traits,
such as protein subunit variations and seed quality
traits, and some of the mini core collection accessions
have been used to identify disease phenotype, such as
soybean cyst nematode (SCN) and soybean mosaic
virus (SMV) [24]. Recently, variants partial resistant
to P. sojae in the mini core collection were also char-
acterized [25].

Association mapping is a method used to identify
markers associated with a particular trait by using link-
age disequilibrium (LD) between alleles within natural
populations [26], with no need for developing biparen-
tal populations [27]. Recently, association mapping has
been used to identify marker-trait associations in higher
plants [28, 29], including various disease resistance
associations in soybean, such as sclerotinia stem rot
(SSR) resistance [30, 31] and sudden death syndrome
(SDS) resistance [32]. The mini core collection, most of
which consists of local landraces with alleles left behind
during the processes of domestication and positive
selection [24], may be an ideal population for associ-
ation mapping analysis.

Here, we report phenotypic and genotypic screening of
the Chinese soybean mini core collection for resistance
to eleven P. sojae isolates with varying virulence. Our
aim is to investigate the distribution of Phytophthora
resistant germplasm and provide a new resistance
gene pool for future breeding programs. An associ-
ation analysis was developed to identify markers asso-
ciated with Phytophthora resistance in the mini core
collection, and the results will be useful for genomic
identification of loci conferring resistance to P. sojae
and for exploration of the genetic basis of resistance.

Methods

Plant materials

The soybean mini core collection is a set of 248 acces-
sions chosen from 23,587 germplasm accessions con-
served in the Chinese National Soybean GeneBank
(CNSGB), which effectively maintains the genetic diver-
sity of soybean in China. The accessions were provided
by Professor Lijuan Qiu of the Chinese Academy of
Agriculture Sciences. Excluding those without SNP
marker data, 224 accessions from the mini core collec-
tion were used in this study. The collection consists of
196 landraces and 28 modern cultivars originating from
26 provinces and spread across four ecological regions
representing four major soybean planting areas as
follows: the North region (NR), the Northeast region
(NER), the Huanghuai region (HHR) and the South
region (SR) (Additional file 1).
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A set of 13 differential cultivars, each possessing a sin-
gle Rps gene, and one susceptible cultivar without any
known Rps genes were used to confirm the pathotypes
of the P. sojae isolates. These cultivars were Harlon
(Rpsla), Harosoyl3XX (Rpslb), Williams79 (Rpslc),
PI103091 (Rps1d), Williams82 (Rpslk), L76-1988 (Rps2),
Chapman (Rps3a), PRX146-36 (Rps3b), PRX145-48
(Rps3c), L85-2352 (Rps4), L85-3059 (Rps5), Harosoy62XX
(Rps6), Harosoy (Rps7) and Williams (susceptible). The
seeds were stored in our laboratory.

Pathogen isolate virulence

The 11 P. sojae isolates (P6497, HLJ08-17, P7063, AH,
H15, HeN08-35, PNJ1, Pmg, Pm28, Pm31 and JS08-12)
were obtained from Professor Yuanchao Wang of Nanjing
Agricultural University. The isolates were maintained on
V8 juice agar slant at 15 °C and transferred to V8 juice
agar plate medium at 25 °C for 7 days prior to inoculation.
All isolates were tested for virulence against the above
differential cultivars using the hypocotyl inoculation
technique with mycelium [33]. The isolate virulence
formulas and areas of origin are listed in Table 1.

Plant inoculation and disease assessment

The resistance of the accessions from the soybean mini
core collection was evaluated using the hypocotyl inocu-
lation technique with mycelium, which is the preferred
method for evaluating soybean resistance to P. sojae me-
diated by Rps genes [2]. All screening experiments were
conducted at Nanjing Agricultural University in Nanjing,
China. Ten seeds of each germplasm accession were
planted in a plastic pot filled with vermiculite. Seedling
were grown in a greenhouse at 25 °C with a 14-h photo-
period and watered once daily. When its cotyledons
fully opened (approximately seven days after planting),
the seedlings were prepared for inoculation. An inci-
sion (approximately 1 cm in length) was made in the

Table 1 Virulence formula of 11 isolates of Phytophthora sojae

Isolates of P. sojae  Virulence formula® Origin

P6497 1b,7 America

HLJO8-17 2457 Heilongjiang, China
pP7063 1a,1d,3a,6,7 America

AH 2,33,3b,4,5 Anhui, China,

H15 1b,3b,3¢,5,6,7 Heilongjiang, China
HeN08-35 3a,3¢,4,5,6,7 Henan, China

PNJ1 1d,2,3b,3¢4,5,7 Jiangsu, China

Pmg 1b,1d,2,33,3b,4,5,6,7 America

Pm28 1a,1b,1¢,1d,1 k.2,33,3b,3¢,5,6,7  America

Pm31 1a,1b,1¢,1d,1 k2,3b,3c4,56,7 America

JS08-12 1a,1b,1¢,1d,1 k2,33,3b,3¢4,56,7 Jiangsu, China

“virulence formula shows the resistance gene(s) defeated by an isolate of P. sojae
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hypocotyl below the cotyledonary node, and a piece
of agar (approximately 3 mm square) with mycelium
was inoculated into the wound. The inoculated seed-
lings were placed in a mist room (90 % relative
humidity) at 25 °C without light for 10 h and then
returned to the greenhouse. The experiment was
repeated three times for each isolate to confirm the
reactions between P. sojae and the seedlings. For each
time of inoculation, the differential cultivars were
included to verify the success of the inoculation.

Five days after inoculation, accessions were evaluated
based on the percentage of survival plants from all repli-
cations. Susceptible plants suffered a collapse of the
hypocotyl and died, whereas resistant plants developed a
hypersensitive reaction (slight necrotic lesions around
the wounds). An accession was considered susceptible
(S) if less than 30 % of the seedlings survived and
was considered resistant (R) if more than 70 % of the
seedlings survived. Seedlings survival percentages ran-
ging from 30 % to 70 % were considered intermediate
(I) reactions. Intermediate reactions have been broadly
classified as resistant reactions according to previous
reports [20].

SNP data

The mini core collection was genotyped with 1,645 SNP
markers provided by Professor Lijuan Qiu (listed in
Additional file 2); among them, 577 SNPs had already
been reported [34]. Minor allele frequency and heterozy-
gosity of markers were assessed using PowerMarker 3.25
software [35].

Linkage disequilibrium

Pairs of SNPs on the same chromosome were identified
as linked SNPs, while those on different chromosomes
were identified as unlinked SNPs. The correlation coeffi-
cient ©* was used to estimate the degree of linkage
disequilibrium (LD) between each pair of SNPs using
TASSEL 5 software [36]. LD decay was evaluated using a
nonlinear regression of expected 7%, as described with E
(r*) =1/(1 + 4N.c) [37], where N, is the effective popula-
tion size, and c¢ is the recombination rate in Morgan
units. We assumed that the soybean genome (Williams 82)
and the linkage map had equal sizes (approximately
1.1 GB=2500 cM) and that 1 ¢cM =440 Kb between
the recombination rates and physical distances. In this
way, the physical position of SNP markers was con-
verted to the recombination rate ¢. The N, value was
estimated using R software (http://www.R-project.org),
according to the linear relationship between ¢ and 7.
Based on the method developed by Mather [38], the r*
threshold value fell on the 95th percentile of the
unlinked SNPs * value.
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Population structure and kinship
STRUCTURE 2.2 software [39] was used to estimate
population structure. With an admixture model and an
independent allele frequency model, the number of pop-
ulations (K) was set from 1 to 15 with 5 replications for
each K, with the length of the burn-in period set to
10,000 and the number of Monte Carlo Markov Chain
(MCMC) replications set to 100,000. K value estimation
was determined by the log probability of the data LnP
(D) and delta K. Previous studies indicated that there
were two or three distinct subgroups in the mini core
collection depending on the markers used in the tests
[25, 40]. Based on the Q-matrix obtained from the
membership probability of each variety, the mini core
collection was divided into such subgroups [41].

The kinship matrix [42] was estimated as the geno-
type similarity between the different pairs of SNPs
using TASSEL 5 software [36].

Association mapping

Association analysis was performed using TASSEL 5
software [36]. Three different models were used to test
associations between SNP markers and resistance. The
first model was the Naive model, which contained only
the SNPs being tested. The second model was a general
linear model (GLM) with the Q matrix as a covariate.
The third model was a mixed linear model (MLM),
where the Q matrix and the relative kinship matrix were
included as covariates. The significant association
threshold was set to a P-value < 1073 (-Logy P > 3.00).

Candidate gene prediction and annotation
Candidate gene positions and functional annotations
were retrieved from the Phytozome database (http://
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www.phytozome.org/) and the Soybase database (http://
www.soybase.org/).

Results

Resistance reaction to P. sojae isolates in the soybean
mini core collection

A total of 11 P. sojae isolates were used to evaluate
the resistance of 224 accessions of the Chinese soybean
(G. max) mini core collection. The pathotype complexity
of the isolates ranged from 2 to 12 (Table 1). The isolates
had the most virulence interactions with Rps7 (91 %),
followed by Rps6 (82 %) and Rps5 (72 %), and the least
virulence interactions with Rpslc (27 %) and Rpsla (36 %)
(Additional file 3).

The soybean mini core collection showed varying
resistance reactions to the diverse virulence of the iso-
lates. As shown in Fig. 1 and Table 2, more than half of
the soybean collection had susceptible reactions to each
isolate, which indicates that the soybean in China is
extremely susceptible. The largest proportion of soybean
germplasm accessions showed up to 40.2 % resistance to
the AH isolate. More than half of these resistant acces-
sions came from the Sichuan (13), Hubei (11), Jiangsu
(8), Fyjian (7), Shandong (6), and Heilongjiang (6) prov-
inces, which are located in South and Huanghuai regions
of China. The percentages of accessions with resistance
to the P7063 and HLJ08-17 isolates were 37.1 % and
31.7 %, respectively, which ranked second and third.
These resistant accessions were mainly from the Hubei
(10/13), Jiangsu (9/11), Fujian (8/6), Sichuan (9/3),
Shandong (6/5), Hebei (4/6) and Jiangxi (6/6) provinces,
which are also located in the South and Huanghuai
regions. The percentages of accessions resistant to the
other isolates ranged from 223 % to 16.5 %. Few
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Fig. 1 The percentage of resistant accessions to 11 isolates of P. sojae
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Table 2 Geographic distribution of soybean germplasm with resistant to 11 isolates of P. sojae

Origin region Isolate of P. sojae
P6497 HLJO8-17 P7063 AH H15 HeN08-35 PNJ1 Pmg Pm28 Pm31 JS08-12

Jiangsu 6 1 9 8 6 8 6 6 4 4 7
Hubei 8 13 10 " 4 9 6 6 7 5 2
Sichuan 3 3 9 13 4 3 6 3 4 5 2
Fujian 5 6 8 7 5 4 5 3 1 4 3
Jiangxi 1 6 6 2 4 6 1 1 1 3 2
Heilongjiang 1 1 1 6 3 1 1 1 4 7 5
Shandong 2 5 6 6 4 3 2 0 1 0 1
Hebei 1 6 4 2 2 3 1 2 4 1 3
Hunan 3 1 5 5 4 2 1 2 1 1 1
Jilin 2 2 2 4 2 1 2 1 3 2 3
Liaoning 2 3 3 2 1 2 1 2 4 3 2
Shannxi 1 2 4 4 1 2 1 2 1 2 0
Henan 1 1 4 4 1 1 1 1 1 0 1
Guangdong 2 3 3 3 3 1 1 1 3 1 0
Shanxi 1 2 1 5 1 1 1 2 2 1 1
Guizhou 1 0 1 3 0 0 1 2 1 1 0
Guangxi 0 1 3 2 1 0 0 0 1 0 0
Anhui 0 1 2 0 1 1 0 2 1 0 2
Zhejiang 0 2 1 1 0 1 0 0 0 0 2
Hainan 1 1 1 1 1 1 1 0 0 0 0
Xinjiang 0 0 0 0 0 0 0 0 1 0 0
Gansu 0 1 0 0 0 0 0 0 0 0 0
Inner mong 0 0 0 1 0 0 0 0 0 0 0
Beijing 0 0 0 0 0 0 0 0 0 0 1
Yunnan 0 0 0 0 0 0 0 0 0 0 1
Ningxia 0 0 0 0 0 0 0 0 0 0 0
North region 5 6 6 13 6 4 4 4 11 12 10
Northeast region 1 5 2 6 1 1 1 2 5 3 4
Huanghuai region 10 19 24 21 12 14 10 9 8 5 7
South region 25 41 51 50 29 31 23 22 21 20 18

accessions (16.5 %) showed resistance to the Pmg
isolate, and these came mainly from the Jiangsu (6),
Hubei (6), Sichuan (3) and Fujian (3) provinces. In
general, the germplasm from the provinces of Jiangsu,
Hubei, Sichuan and Fujian in the South and Huanghuai
regions of China contributed the top four resistant
sources to each isolate (Table 2).

As shown in Fig. 2, soybean germplasm from the
South region (SR) had the highest percentage of
resistant accessions. More than 20 % of accessions
from the SR showed resistance to each isolate of P.
sojae, and more than 40 % of accessions showed re-
sistance to the HeNO08-35, HLJ08-17, P7063 and AH

isolates. This was followed by the soybean germplasm
from the Huanghuai region (HHR), for which more
than 30 % of accessions were resistant to the AH and
Pm31 isolates. The germplasm from the Northeast
region (NER) and the North region (NR) had lower
percentages of resistant accessions. The most resistant
accessions from the NR were resistant to the AH,
HLJ08-17 and Pm28 isolates, but all of them had
percentages of resistant accessions less than 20 %.
Notably, more than 20 % of accessions from the SR
and NER were resistant to the Pm28, Pm31 and JS08-
12 isolates, which were the most virulent isolates that
we used.
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Investigation of the distribution of multi-resistant
soybean germplasm in China

There were 168 (75 %) soybean accessions resistant to
1-11 isolates (Fig. 3 and Table 3). Among them, sixty-
five (29.0 %) accessions were resistant to 1-2 isolates,
which were concentrated in the Sichuan (7), Shanxi (6),
Hebei (6), Shandong (5), Jilin (5) and Liaoning (5) prov-
inces. Fifty-six (25.0 %) accessions were resistant to 3—4
isolates; these accessions were distributed in the Jiangsu
(8), Sichuan (7), Heilongjiang (5), Henan (4), Hunan (4)
and Jiangxi (4) provinces. Thirty-nine (24.6 %) acces-
sions were resistant to 5—7 isolates. Most of them were
concentrated in the Hubei (11) and Fuyjian (4), Sichuan
(3) and Jiangsu (3) provinces. Eight accessions from the
Jiangsu (2), Fujian (2), Hubei (1), Hebei (1), Liaoning
(1) and Jiangxi (1) provinces were resistant to 8-11

isolates (Table 4); notably, the accession ZDD03776
from the Jiangsu province had the broadest spectrum of
resistance, showing resistance to 11 isolates. Overall,
most NR soybean accessions showed resistance to less
than 4 isolates, and most NER accessions showed
resistance to 1-5 isolates. SR and HHR accessions spe-
cifically from the Jiangsu, Hubei and Fujian provinces
had the most variable and broad-spectrum resistance.

Postulation of resistance genes in the soybean mini core
collection germplasm

There were 109 reaction types to 11 P. sojae isolates in
the soybean mini core collection (data not shown). By
comparing the responses of the mini core collection
and 13 differential cultivars, we postulated of gene(s)
in the resistant soybean accessions (Table 5). Fifty-six
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Fig. 3 The numbers of resistant accessions to multi-isolates of P. sojae
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Table 4 Accessions with resistant reactions to between 8 to 11
isolates of Phytophthora sojae

Origin region Number of isolates Accessions Reaction type® Province Ecological region
1 2 3 4 5 6 7 8 9 10 N ZDD06501 RRRSRRRRSRS Jiangxi South
Ningxia - - - - - - s - /DD21485 RRRRRRSSRSR Fujian South
Gansu 1 - - - - - s s - ZDD00921 RRRRRRSRRRS Liaoning North
Yunnan 1 - - - - - - ZDD06363 RRRRRRRRSRS Fujian South
Xinjiang T - - - - - - - ZDD03741 RRRRRRRRSSR Jiangsu Huanghuai
Inner mong 1 - - - - - - - - - - ZDD11581 RRRRRRRRRSS Hubei South
Beijing 1 - - - - - - - - /DD18835 RRRRRRRRRSS Hebei Huanghuai
Guangxi - 1 2 - - - - - ZDD03776 RRRRRRRRRRR Jiangsu Huanghuai
Guizhou 2 1 2 - - - - - - - °The reaction type an accession occurred is a combination of reactions of the
-~ accession to P6497, HLJ08-17, P7063, AH, H15, HeN08-35, PNJ1, Pmg, Pm28,
Zhejiang B ) 1 1 B T B Pm31 and JS08-12 isolates
Henan 1 1 31 - - - - - - -
Shaanxi 22 10 - - s s and was postulated to have a gene combination of
Anhui T Rpslc and Rps7. Accession ZDD16874 from the Hainan
Heilongjiang 3 01 4 1 2 - - - - . province had the reaction type RRRRRRRSSSS and was
Hunan R S postulated to have gene combinations of Rpslb with
Shani s s o Rps1d/Rps2/Rps5/Rps6. The other 105 reaction types
were not consistent with any single Rps gene or two-
Guangdong 22 o 7 7 7 gene combinations. Based on these results, we postu-
Shandong 23 12 1 1 - - - lated that more than two Rps genes or novel Rps genes
Sichuan 2 5 2 5 1 2 - - - - - were present in most resistant accessions.
Hainan - - - - - - - - - -
Jilin 401 2 -1 L Linkage disequilibrium decay in the soybean mini core
Jiangxi 1 2 1 3 1 - -1 - - - collection - . .
The soybean mini core collection was genotyped with
Liaoning 32 - 1 s e 1,645 SNP markers. The physical distribution of SNPs
Hebei 4 2 1 1 1 - - -1 - was fairly uniform, with an average of 1.72 SNPs/Mb for
Hubei 1.2 7 202 - 1 - - the entire genome, and varied between a minimum of
Fujian L T I T 0.80 SNPs/Mb on GmO1 and a maximum of 3.57 SNPs/
Jiangsu 301 1 7 - 91 -1 - Mb on GmO8 (Additional file 4). After excluding
A markers with >15 % missing data, a minor allele fre-
North region 9 5 2 - T - - - - - .
quency < 0.05 and heterozygosity > 0.15, a total of 1,514
Northeastregion 114 6 2 4 - 1 - 1 - - high quality SNPs were selected for association mapping.
Huanghuai region 6 6 6 10 3 2 1 - 2 - 1 The mean 7* values for unlinked and linked SNP pairs
South region 1M 13 10 20 16 7 4 2 2 - - were 0.01 and 0.03. With increasing physical distance

accessions were postulated to have no Rps genes with
susceptible reactions to all isolates. Seven accessions
(ZDD01169, ZDDO02149, ZDD04429, ZDD07409,
ZDD08018, ZDD17622, and ZDD18524) were postu-
lated to have the Rps7 gene because they had the
same reaction type (SSSSSSSSSSR) as the differential
cultivar Harosoy, which carries Rps7. The accessions
ZDD14783 and ZDD16675 from the Hunan and
Guangdong provinces were postulated to have the
Rps4 gene because their reaction type RSRRRSSSRSS
was consistent with the differential cultivar L85-2352,
which carries Rps4. The accession ZDD03741 from the
Jiangsu province had the reaction type RRRRRRRRSSR

between loci, 7* values declined rapidly. The average LD
decay for all chromosomes was estimated at 544.01 kb at
1 <0.04 and described by the red curve in Fig. 4.

Population structure and relative kinship of the soybean
mini core collection

STRUCTURE 2.2 software [39] analysis indicated that
the soybean mini core collection was divided into two
main subgroups (Fig. 5a). The germplasm belonging to
each subgroup had differences in geographical origin
(Fig. 5b). Fifty-one accessions belonged to subgroup 1,
among which one accession (ZDD19579) came from the
SR, 13 accessions came from the HHR, 27 accessions
came from the NR and 10 accessions came from the
NER. Subgroup 2 was a large group that included 173
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Table 5 Gene postulations and reaction types of soybean accessions

Accession

Reaction type® Gene postulation

ZDD00294, ZDD00310, ZDD00638, ZDD00932,
ZDD01402, ZDD01983, ZDD02096. ZDD02114,
ZDD02134, ZDD02159, ZDD02315, ZDD02400,
ZDD02626, ZDD02940, ZDD03533, ZDD03540,
ZDD03733, ZDD06410, ZDD06822, ZDD06823,
ZDD07370, ZDD07489, ZDD07623, ZDD08120,
ZDD08228, ZDD08238, ZDD08251, ZDD08352,
ZDD08472, ZDD08603, ZDD08728, ZDD08928,
ZDD08986, ZDD09136, ZDD09279, ZDD10252,
ZDD10270, ZDD11092, ZDD11159, ZDD11226,
ZDD12407, ZDD12680, ZDD12908, ZDD12910,
ZDD13666, ZDD14228, ZDD14920, ZDD16682,
ZDD16743, ZDD17325, ZDD17375, ZDD17457,
ZDD17574, ZDD18632, ZDD19464, ZDD20671

ZDD01169, ZDD02149, ZDD04429, ZDD07409,
ZDD08018, ZDD17622, ZDD18524

ZDD14783, ZDD16675
ZDD16874

ZDD03741

SSSSSSSSSSS 0

SSSSSSSSSSR Rps7

RSRRRSSSRSS Rps4

RRRRRRRSSSS Rps1b + Rps1d/Rps2/
Rps5/Rps6

RRRRRRRRSSR Rps1c+ Rps7

“The reaction type an accession occurred is a combination of reactions of the accession to P6497, HLJ08-17, P7063, AH, H15, HeN08-35, PNJ1, Pmg, Pm28, Pm31

and JS08-12 isolates

accessions, among which 99 accessions came from
the SR, 35 accessions came from the HHR, 10 acces-
sions came from the NR and 29 accessions came
from the NER, which accounted for almost all of the
germplasm from the SR, 73.0 % from the HHR,
27.0 % from the NR and 74.4 % from the NER. Ac-
cording to the variation and the level of resistance in
the four regions, subgroup 2 had the most resistance
accessions and a higher resistance level.

Pairwise kinship was calculated among the soybean
accessions. Approximately 67.2 % of the pairwise kinship
coefficients were 0.3-0.4, and only 2.0 % were larger
than 0.5, indicating weak relatedness among the soy-
bean germplasm (Fig. 6).

Association mapping and candidate genes for
Phytophthora resistance

We used a Naive model, a GLM model (Q) and a
MLM model (Q + K) for association mapping (Additional
file 5). A total of 82 marker-trait associations were
detected with the Naive model, while 29 and 12 resistance
associations were identified with the GLM and MLM
models by applying a P<107® threshold (Additional
file 6). To improve the reliability of the results, we
focused on associations supported by at least two
models. Finally, fourteen marker-trait associations identi-
fied by at least two models were considered to have
significant associations with P. sojae resistance (Table 6).
Nine (64.3 %) of them were within or near the

s ¢

Distance (Mb)

Fig. 4 Scatter plots and LD decay against physical distance among co-chromosome SNPs
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genomic regions detected in previous studies on
soybean disease resistance (http://www.soybase.org/),
while five associations were newly associated with
Phytophthora resistance.

The most significant association with resistance to
the HLJ08-35 isolate was on Gm15. The resistance trait
for the P7063 isolate had associations in the same
region with two SCN-QTLs [43, 44], on GmO03 and
Gm15, respectively. One resistance association of the
H15 isolate was on Gml6, within a brown stem rot
(BSR) resistance QTL [45] interval. For the HeN08-35
isolate, two significant associations were on Gm16 and
Gm20, respectively. The resistance to the PNJ1 isolate
showed associations with genome regions on GmO6

and Gm16, which were co-located with SCN-QTL [46]
and PRR-QTL [47, 48]. For the Pmg isolate, one
marker-trait association on Gmll overlapped with a
sclerotinia stem rot (SSR) resistance locus [49], and one
on Gm16 in the same RpsUn2 interval [50] was identi-
fied. Two associations with resistance to the Pm28
isolate were located on GmO03 and Gm1l5 in the same
regions of Rpsl [51] and PRR-QTL [52]. Resistance
to the Pm31 isolate had two associations, on GmO04%
and GmO09.

To shed light on the potential genes involved in
resistance to P. sojae, 14 significantly associated SNP
markers were selected to represent these marker-trait
associations (Table 7). They resided in 12 annotated
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genes, among which 10 SNPs were located in gene
exons, and 2 SNPs were located in introns. The candi-
date genes encode a LEM3 (ligand-effect modulator 3)
family/CDC50 family member protein, an ARF-related/
ADP-ribosylation factor gene, a predicted lipase class 3
gene, a thioredoxin gene, a DEAD/DEAH box helicase,
an oxygenase, a serine/threonine protein kinase, an
NPH3 family protein, a zinc finger protein, a lipid
transport protein, an ankyrin repeat and a calmodulin-
binding motif protein. This is the first time that these
genes were reported to be associated with Phytophthora
resistance.

Discussion

In this study, a systematic and effective analysis of
Phytophthora resistance to various P. sojae isolates in
the Chinese soybean mini core collection was per-
formed. The mini core collection was extremely suscep-
tible to the isolates from China and America (Table 1),
with an average of 23.6 % of accessions showing resist-
ance to P. sojae isolates tested, which implied the
urgency of soybean resistance breeding. A total of 168
(75 %) soybean accessions showed resistance to more
than one P. sojae isolate, suggesting that abundant
resistant resources exist. An overview of the resistance

Table 6 SNP markers identified in association mapping of P. sojae resistance

Isolate SNP markers Chr Position Naive GLM MLM Co-located
TogP  R®%  dogP  R%  dogoP  Roe Ut
HLJ08-17 Q-15-0369188 15 48863575 5.08 1035 4.12 835 2.85 6.27 New
P7063 Q-03-0266907 3 36634361 5.18 1043 3.14 553 1.82 323 SCN [43]
P7063 0-15-0128012 15 15532390 5.87 13.67 3.60 791 2.00 5.05 SCN [44]
H15 0-16-0268535 16 33793393 2.33 5.02 3.14 648 303 6.87 BSR [45]
HeNO08-35 BARC-014467-01559 16 3962328 358 748 337 6.93 3.17 7.00 New
HeN08-35 BARC-013645-01207 20 46624541 3.34 6.84 3.72 746 3.21 6.95 New
PNJ1 BARC-014527-01571 6 644565 345 7.28 344 7.7 344 7.65 SCN [46]
PNJ1 Map-3031 16 15093996 3.04 5.02 335 5.54 3.01 5.18 PRR [47, 48]
Pmg Map-1995 " 7904934 2.84 4.72 361 6.16 345 6.19 SSR [49]
Pmg BARC-042413-08254 16 35175092 4.64 9.90 397 845 3.68 833 RpsUN2 [50]
Pm28 Q-03-0059953 3 5147782 206 336 3.19 5.54 3.08 5.69 Rps1 [51]
Pm28 BARC-039153-07459 15 831324 5.00 10.67 4.79 10.14 3.68 8.60 PRR [52]
Pm31 Map-0715 4 46749591 1.09 2.35 3.64 742 3.09 6.86 New
Pm31 Map-1630 9 3157784 437 9.09 341 6.98 3.08 6.84 New

“The SNP co-located in one of the loci intervals as reported previously
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Table 7 Candidate genes related to P. sojae resistance
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SNP marker Nucleotide Location Gene Annotation®

Q-15-0369188 A/G Exon Glyma15g41680 LEM3 (ligand-effect modulator 3) family/CDC50-related
Q-03-0266907 A/G Exon Glyma03g28660 ARF-related/ADP-ribosylation factor
Q-15-0128012 A/G Exon Glyma15g18620 unknown

Q-16-0268535 AT Exon Glyma16g30140 Predicted lipase class 3 gene
BARC-014467-01559 G/T Exon Glyma16g04700 Thioredoxin

BARC-013645-01207 A/G Exon Glyma20g39240 DEAD/DEAH box helicase
BARC-014527-01571 T Intron Glyma06g01080 20G-Fe (Il) oxygenase superfamily

Map-3031 A/G Intron Glyma16g14080 Serine/threonine protein kinase

Map-1995 A/G Exon Glyma1l1g11100 Phototropic-responsive NPH3 family protein
BARC-042413-08254 A/G Exon Glyma16g31930 Zinc finger domain

Q-03-0059953 A/G Exon Glyma03g04960 Lipid transport protein

BARC-039153-07459 A/C Intron Glyma15g01370 unknown

Map-0715 AT Exon Glyma04g40800 Serine/threonine protein kinase

Map-1630 /G Exon Glyma09g04310 Ankyrin repeat and calmodulin-binding motif

?Annotation description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.soybase.org/)

spectrum of the mini core collection to 11 P. sojae
isolates was given. Twenty-four (10.7 %) accessions
were resistant to more than five isolates, and eight
accessions were notably resistant to 8-11 isolates
(Table 4). In conjunction with the previous screening of
Chinese resistant germplasm [20, 22, 53], the results
provide an excellent database for selection of resistant
cultivars and potential breeding materials.

Most accessions resistant to multiple isolates were
concentrated in the South and Huanghuai regions,
especially in the Jiangsu, Hubei, Sichuan and Fujian
provinces, similar to previous results [19, 20, 22, 53,
54]. The South and Huanghuai regions have abundant
precipitation (1000-1500 mm/year) and high tempera-
tures (annual accumulated temperature is 4000—8000 °C)
[55, 56], which can promote the growth P. sojae
isolates [9]. The high disease pressure in these regions
may be the major factor promoting the variety of
resistant resources found therein. The PNJ1 and JSO8-
12 isolates from the SR and the HeNO08-35 isolate
from the HHR showed strong virulence to 6-13 Rps
genes, which coincided with the high level of resistance
displayed by soybean in those regions. Conversely,
soybean accessions in the NR and NER tend to be more
susceptible, resulting in the need to broaden the genetic
base and breed resistant cultivars. The results of our
study combined with an investigation of P. sojae patho-
types, especially the dominant pathotypes from each
region of China, may provide a reasonable guide for
planting cultivars with different resistance genes, which
would be an effective means of PRR disease control.

The various reaction types of soybean accessions
indicated that accessions may carry different Rps
genes. The greater frequency of resistance reactions

in the mini core collection than in the differential
cultivars implied that the collection may carry more
or novel resistance genes. According to the gene pos-
tulation, only 67 accessions were predicted to contain
Rpslb, Rpslc, Rps4 or Rps7. The number of postu-
lated accessions was not as high as in previous stud-
ies [20, 22], perhaps due to the complex virulence
effects of the isolates we used, which made the prob-
ability of a soybean accession having the same reaction
type as one differential cultivar only 224/2'%, The other
157 resistance accessions may have multiple or novel
resistance genes. Developing bi-parental populations of
these accessions and fine mapping resistance genes
may be one way of confirming the results of the gene
postulation.

The observed phenotypic variations implied abundant
genetic diversity in the mini core collection. When geno-
typed with 1,645 SNP markers, the mini core collection
showed abundant genetic diversity, weak population
structure and familial relatedness. We used an associ-
ation mapping approach to identify genomic loci associ-
ated with variations in resistance phenotypes. A total of
14 significant resistance associations were identified,
among which five were newly associated with Phy-
tophthora resistance, and four were located in known
Rps gene/QTL regions. Five other associations were
located in the same chromosomal regions of resistance
QTLs of other diseases, such as SCN and BSR (Table 6),
implying that these regions may contain pleiotropic
genes or different resistance genes clustered together.
Research on these loci may enable understanding of
the genetics of resistance to multiple pathogens. The
highest P-value of significantly associated SNPs was
8.38 x 10°°, which is not as high as that of other studies
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[28, 57]. This may be due to the small number of SNP
markers that we used, which may reduce the degree of
association. To date, only the Rpslk gene has been
cloned [58, 59], although the mechanism underlying
Phytophthora resistance is still unclear. The resistance-
associated loci may be helpful in marker-assisted
selection and in understanding the mechanism that me-
diates resistance.

We chose genes where the most significantly associ-
ated SNP markers were located as candidate genes for
associations. Glymal5g41680 is a member of the LEM3
(ligand-effect modulator 3) family/CDC50 protein fam-
ily, and it may be required for phospholipid transloca-
tion across the plasma membrane [60]. Glyma03g28660
is an ADP-ribosylation factor gene. ADP-ribosylation
factor 1 (RARFI) induced pathogenesis-related gene
expression and pathogen resistance when it was over-
expressed in tobacco plants [61], and it acted as a
positive regulator of cell death [62]. Glymal6g30140 is a
predicted lipase class 3 gene that may have essential
functions in plant defence or priming. Ectopic expres-
sion of AtPAD4 possessing a lipase 3 motif broadened
resistance to SCN and root-knot nematode (RKN) dis-
eases in the soybean [63]. Glymal6g04700 encodes a
thioredoxin protein. Two transcript variants of the Pi-ta
protein, which coupled the original NBS-LRR domain
with a C-terminal thioredoxin domain, showed the high-
est level of expression in comparison to other transcript
variants in rice [64]. Glyma20¢39240 is a DEAD/DEAH
box helicase, which may take part in splicing the RNA
precursor [65] and in transcription initiation [66].
Glyma06g01080 belongs to the 20G-Fe (II) oxygenase
superfamily and may catalyse the formation of plant
hormones, such as ethylene and gibberellins. In Arabi-
dopsis, the DMRG6 gene, which has the same domain, is
defence-associated and required for susceptibility to
downy mildew [67]. Glymal6g14080 and Glyma04g40800
encode a serine/threonine protein kinase, which not only
has signal transduction activity but also inhibits the
release of spores and the germination of the germ tube
in Phytophthora infestans [68]. Glymallgl1100 encodes
an NPH3 family protein, which activates signal trans-
duction and regulates auxin signalling during plant
growth [69, 70]. Glymal6g31930 contains a zinc finger
domain, which has been shown to negatively regulate
transcription [71, 72]. Many NBS-LRR domain genes
contain zinc finger domains [73], and some have been
reported to play a role in resistance to PRR [74].
Glyma03g04960 encodes a lipid transport protein
(LTP); lipid signals are essential for the activation of
plant defence responses. Many studies have shown
that over-expression of LTPs in plants can enhance their
resistance to pathogens [75-77], possibly through inhib-
ition of germination of their spores [78]. Glyma09¢04310
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has an ankyrin repeat and a calmodulin-binding motif.
The ankyrin repeat participates in the regulation of tran-
scription [79]; for example, the AKP2 gene in Arabidopsis
is a negative regulator of PR-1 (pathogen-related protein I)
expression [80]. Calmodulin-binding proteins can detect
external stimuli and regulate systemic acquired resistance
[81, 82]. Over-expression of GmCaM4 in the soybean
resulted in enhanced resistance to three pathogens
through increased expression of pathogenesis-related
(PR) genes [83]. In future studies, the functions of these
genes in the resistance process will be examined.

Some studies have inferred that some Rps genes con-
tain NBS-LRR domains [13, 58, 59]. In our study, no
such NBS-LRR-domain gene was found among the
candidates, which may due to the complex mechanism
of soybean resistance. This situation has been found in
other disease studies. For instance, soybean resistance
to SCN through the Rghl locus is conferred through
copy number variation, but the Glymal8g02680.1 gene
in the Rhgl locus, which encodes an LRR-kinase, does
not contribute to SCN resistance [84, 85].

Conclusions

The information presented in this study will be of great
value to plant breeders in their efforts to develop PRR
resistance breeding programs in the soybean. The
results revealed the urgency of resistance breeding and
provided excellent resources for breeding materials,
especially the soybean from the South and Huanghuai
regions, which showed high levels of resistance. An
association mapping of Phytophthora resistance identi-
fied fourteen significant marker-trait associations, nine
of which were located within known PRR or other
disease resistance loci; five of these associations were
previously unknown in Phytophthora resistance. In the
future, candidate genes related to resistance will be
functionally identified to understand the resistance
mechanism in the soybean.
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