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Abstract

Background: QTL mapping through genome-wide association studies (GWAS) is challenging, especially in the case
of low heritability complex traits and when few animals possess genotypic and phenotypic information. When most
of the phenotypic information is from non-genotyped animals, GWAS can be performed using the weighted
single-step GBLUP (WssGBLUP) method, which permits to combine all available information, even that of
non-genotyped animals. However, it is not clear to what extent phenotypic information from non-genotyped
animals increases the power of QTL detection, and whether factors such as the extent of linkage disequilibrium (LD)
in the population and weighting SNPs in WssGBLUP affect the importance of using information from
non-genotyped animals in GWAS. These questions were investigated in this study using real and simulated data.

Results: Analysis of real data showed that the use of phenotypes of non-genotyped animals affected SNP effect
estimates and, consequently, QTL mapping. Despite some coincidence, the most important genomic regions
identified by the analyses, either using or ignoring phenotypes of non-genotyped animals, were not the same. The
simulation results indicated that the inclusion of all available phenotypic information, even that of non-genotyped
animals, tends to improve QTL detection for low heritability complex traits. For populations with low levels of LD,
this trend of improvement was less pronounced. Stronger shrinkage on SNPs explaining lower variance was not
necessarily associated with better QTL mapping.

Conclusions: The use of phenotypic information from non-genotyped animals in GWAS may improve the ability to
detect QTL for low heritability complex traits, especially in populations in which the level of LD is high.
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Background
Despite advances in genome-wide association study
(GWAS) approaches, QTL detection using real data is
still challenging, especially in unfavorable scenarios such
as those posed by low heritability complex traits and by
the availability of relatively few genotyped animals.

Bayesian multiple-regression models are the preferred
methods for GWAS [1]. In addition to allowing the sim-
ultaneous inclusion of all markers in the analyses, Bayes-
ian methods permit to consider different prior
distributions for marker effects, an appealing quality es-
pecially for traits affected by large QTL. In a simulation
study, Van den Berg et al. [2] tested the adequacy of
Bayesian multiple-regression methods for QTL mapping
and observed that Bayes C [3] is suitable to detect QTL,
especially in the case of traits with medium to high her-
itability and a large number of records.
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The single-step GBLUP method (ssGBLUP) [4, 5], ori-
ginally used in plant and animal breeding for the predic-
tion of breeding values, has also been applied to GWAS
[6, 7]. Despite the benefits of ssGBLUP compared to
multiple-step methods [8–10], it is based on an infini-
tesimal model, i.e., a model in which all markers are as-
sumed to have a small effect. This model is particularly
limiting when traits affected by large QTL are analyzed.
Given this limitation, Wang et al. [6] proposed the
weighted single-step GBLUP (WssGBLUP) method,
which permits to combine all available pedigree, pheno-
typic and genotypic information in a single step, weight-
ing the marker effects according to their (supposed)
importance for the trait of interest. In WssGBLUP, the
use of phenotypes is not restricted to those of genotyped
animals or to pseudo-phenotypes (e.g., daughter yield
deviation) as in multiple-step methods, which is believed
to be advantageous [6, 7]. However, it is not clear to
what extent the use of phenotypes from relatives without
genotypes affects QTL detection.
The aims of the present study were: 1) to determine

whether additional phenotypic information from non-
genotyped animals affects QTL mapping of real data, and
2) to evaluate, by simulation, whether this additional
phenotypic information enhances QTL mapping for a low
heritability complex trait and whether factors such as the
extent of linkage disequilibrium (LD) in the population and
weighting SNPs in WssGBLUP affect the importance of
using information from non-genotyped animals in GWAS.

Methods
Phenotypes and pedigree
The set of real data contained the phenotypic informa-
tion of age at first calving (AFC) of Nelore heifers con-
trolled by the DeltaGen® breeding program. This dataset
was chosen to represent the scenario of a low heritability
complex trait, with few available genotyped animals and
a relatively large number of phenotypes.
The dataset contained records from animals raised on

tropical pasture in different commercial herds located in
the southeastern, western and central regions of Brazil.
During the breeding season, usually the rainy period, the
heifers are artificially inseminated or naturally mated. In
general, the first mating of heifers occurs at about
26 months of age, although some herds expose heifers
earlier at an age of about 14–18 months. Two scenarios
were established to perform GWAS of AFC. The first
scenario included all heifers that had the opportunity to
breed at an early age and with observed AFC (SI), total-
ing 43,482 females, and the second considered only
heifers with observed AFC and available genotype (SII),
totaling 1,813 females. The pedigree file used in the two
scenarios contained 237,602 animals; of these, 100,697
had known parents.

Genotyped animals
A total of 1,829 Nelore females were genotyped using
the Illumina Bovine HD panel (Illumina®, San Diego,
CA, USA), which contains 777,962 single nucleotide
polymorphism (SNP) markers. These females were born
between 2007 and 2009 and were chosen among con-
temporary heifers exposed at an early age (14–18
months), which belonged to two main farms of the com-
mercial breeding program. Heifers that did not conceive
in the anticipated breeding season were also exposed in
the regular breeding season, at about 26 months of age.
Heifers that did not conceive in either season were ex-
cluded from the study. The minimum, maximum and
average values of observed AFC of the genotyped fe-
males were 698, 1,200 and 1,050 days, respectively, and
the proportion of heifers considered precocious (AFC <
900 days) was 28.2 %.
Quality control (QC) of the genotypes was performed

discarding information of SNPs mapped in non-
autosomal regions (42,669) and SNPs with a GC score <
0.7, a call rate < 0.95 (16,484), a minor allele frequency
(MAF) < 0.02 (266,502), and a p-value of the Hardy-
Weinberg equilibrium test < 10−5 (6,925). Fifty-four
SNPs presenting duplicated map coordinates with other
SNPs were also excluded from the dataset. To avoid re-
dundancy of genotypic information, SNPs that were
highly correlated (r2 > 0.995) with other SNPs within a
sliding window containing 100 consecutive markers were
removed from the dataset. Only one marker of each pair
of highly correlated SNPs was discarded (111,450). Sam-
ples with a call rate < 0.9 for SNPs passing QC were ex-
cluded (16). The remaining numbers of SNPs and
samples after QC were 333,878 and 1,813, respectively.

Simulated data
The number of phenotypes and genotypes available in
the simulation study mimics the information available in
the real dataset. The phenotypes and genotypes were
simulated using the QMSim v.1.10 software [11]. Ten
replicates of a hypothetical trait with a heritability of
0.14 and phenotypic variance of 1.0 were performed.
This heritability was chosen since it was the estimate ob-
tained with the real data.

Simulated population
Two different populations, which differed in the number of
historical generations, were simulated to produce different
levels of LD. In both cases, a historical population was gen-
erated from generation zero to 1,000, with a constant size
of 1,000 animals. From generation 1,001, a gradual reduc-
tion in the number of animals (from 1,000 to 200) was sim-
ulated, producing a bottleneck effect and, consequently,
genetic drift and LD. This gradual reduction occurred over
1,020 or 2,020 generations, resulting in a population with a
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lower (LLD) or higher (HLD) level of LD to mimic levels of
LD in taurine [12] and indicine [13] cattle, respectively. The
simulation process of LLD and HLD only differed in the
number of historical generations. The 200 animals (100 fe-
males) of the last generation of the historical population
were selected for the expanded population. The size of this
population mimicked the effective size of the real popula-
tion [14]. For the expanded population, a mating system
based on the random union of gametes, absence of selec-
tion and an exponential growth of the number of females
(the number of dams was doubled every generation) were
considered, with a replacement rate of 100 % every gener-
ation and an average of five products per dam, with equal
probability of being a male or a female. Thus, the 100 dams
of the last generation of the historical population produced
500 offspring (first generation of the expanded population);
of these, 200 females were selected to be the dams of the
next generation of the expanded population and so forth.
Six expanded generations were generated, resulting in
16,000 animals in the last generation of the expanded
population (8,000 females). After the expansion process,
240 males and 6,000 females of the last generation were
randomly selected to comprise the founder animals of the
selection population. The selection population covered 15
generations. In each generation of the selection population,
the selected males and females were randomly mated, gen-
erating a single product with equal probability of being a
male or a female. The replacement rate of sires and dams
was kept constant at 20 % and the selection criterion was
the expected breeding value. A total of 90,000 animals were
produced over the 15 generations, mimicking the number
of available phenotypes in the real dataset; 50 % were fe-
males whose phenotypic data were used for GWAS. The
genotypes of 2,000 females of the last three generations (13,
14 and 15) were randomly selected for GWAS.

Simulated genome and phenotype
It was assumed that QTLs explain 100 % of genetic vari-
ance. The simulated genome had a total length of
2,333 cM, 735,293 markers, and 7,000 QTLs. The num-
ber of markers and QTLs per chromosome ranged from
46,495 to 12,931 and from 121 to 438, respectively, and
were randomly distributed over 29 autosomes. All
markers were bi-allelic, mimicking SNPs found in com-
mercial bovine panels. For the QTLs, the number of al-
leles per loci ranged (randomly) from 2 to 4.
QTL allele effects were sampled from a gamma distri-

bution with a shape parameter of 0.4 [15] and a scale
parameter determined internally with QMSim, obeying
the simulated genetic variance. A mutation rate of 10−4

for markers and QTLs in the historical population was
considered. The number of mutations was sampled from
a Poisson distribution with mean u (u = 2*number of
loci*mutation rate) and each mutation was assigned to a

random locus in the genome. A total of 335,000 markers
(MAF ≥ 0.02) and 1,000 segregating QTLs were ran-
domly selected from the last generation of the historical
population to generate genotypic data for the selection
population. The average distance between adjacent
markers was 0.007 cM. Although the genetic architec-
ture of reproductive traits is unknown, the simulation
parameters used in this study aimed to mimic a poly-
genic complex trait affected by many genes of small ef-
fects and by few genes with more pronounced effects.
The phenotypes of the animals comprised the sum of
QTL effects plus an error term sampled from a normal
distribution with zero mean and variance of 0.86, result-
ing in a trait with a heritability of 0.14.

Linkage disequilibrium analysis
The LD between any two loci on the same chromosome
was assessed by the r2 measure [16] using the SnppldHD
software (Dr. Sargolzaei, University of Guelph, Canada).
The pattern of LD decay of the real and simulated data
was compared to evaluate the adequacy of the simula-
tion process.

Statistical analysis
Two statistical methods were used for real and simulated
data, namely WssGBLUP [6] and Bayes C [3]. Although
comparison of the methods was not part of our object-
ive, Bayes C was also used since it has been suggested as
a suitable method for QTL detection [2].
For real data, the WssGBLUP method adopted was

based on the following model: y = Xβ + Za a + e, where
y is the vector of phenotypic observations (AFC, in
days); X is an incidence matrix relating phenotypes to
fixed effects; β is the vector of fixed effects, including
contemporary group (defined by the concatenation of
classes for herd, year, season and weaning and yearling
management groups, containing on average 80.52
heifers) and age of heifer’s dam as covariate (linear and
quadratic effects); Za is an incidence matrix that relates
animals to phenotypes; a is the vector of direct additive
genetic effects, and e is the vector of residuals. The co-
variance between a and e was assumed to be zero and
their variances were considered to be Hσa

2 and Iσe
2, re-

spectively, where σa
2 and σe

2 are the direct additive and
residual variance, respectively; H is the matrix which
combines pedigree and genomic information [8], and I is
an identity matrix. Solutions for this model were ob-
tained by replacing the inverse of the regular relation-
ship matrix (A−1) in the mixed model equations with the
inverse of H (H−1) [4, 8]. The analyses were performed
using the BLUPF90 family programs [17].
To assess the value of phenotypic information from

non-genotyped animals in QTL mapping, the above
model was applied considering all available phenotypes
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in scenario SI and only the phenotypes of genotyped
cows in scenario SII. Since fixed effects would not be as
well estimated in SII as in SI, to fairly compare the
scenarios the phenotypic observations in SII were pre-
adjusted for the fixed effect estimates obtained in a pre-
vious “regular” BLUP analysis considering all available
phenotypes. Thus, vector β of the GWAS in SII con-
tained only an overall mean and vector y the pre-
adjusted AFC. The “regular” BLUP analysis used the
same model as described above, except that the variance
of a was assumed to be Aσa

2, where A is the regular nu-
merator relationship matrix.
For the simulated data, the same WssGBLUP model

was used, except that only an overall mean was consid-
ered as fixed effect. Since the contemporary group effect
was not simulated, there was no need to pre-adjust the
phenotypes in scenario SII for the simulated data.
For both scenarios (SI and SII) and datasets (real and

simulated), the solutions of SNP effects (û) were ob-
tained according to VanRaden et al. [18] and Stranden &
Garrick [19]: û = DP ’ [PDP ’]− 1âg, where D is a diagonal
matrix with weights for SNPs; P is a matrix relating the
genotypes of each locus, and âg is the vector of predicted
breeding values of genotyped animals. Matrix D, direct
additive genetic effects and SNP effects were iteratively
recomputed according to the method referred to as
“ssGBLUP/S2” by Wang et al. [6]. In the first iteration,
the diagonal elements of D (di) were assumed to be 1
(i.e., the same weight for all markers). For the subse-
quent iterations, di was calculated as: di = ûi

2pi(1- pi),
where ûi is the allele substitution effect of the ith marker
estimated from the previous iteration, and pi is the allele
frequency of the second allele of the ith marker. Before
the beginning of a new iteration, matrix D was normal-
ized to ensure that the total genetic variance was con-
stant across iterations. Three iterations (w1, w2 and w3)
were performed for each scenario, resulting in an in-
creasing shrinkage from w1 to w3 for the SNPs explain-
ing lower variance and, consequently, in an increasing
proportion of variance being explained by the remaining
markers. According to Wang et al. [7], three iterations
are sufficient to reduce the noise of unimportant
markers, i.e., to shrink their effects toward zero. Thus,
the notation SIw1 refers to scenario SI using weight w1,
SIw2 to scenario SI using w2, and so forth. An equiva-
lent notation was adopted for scenario SII.
Bayes C analysis was based on the following model [3]:

y ¼ 1μ þ
Xn

i¼1

gibiδi þ e, where vectors y and e are the same

as described above; 1 is a vector of ones; μ is the overall
mean; gi is the vector containing the genotypes of the
animals for the ith SNP; bi is the allele substitution effect
of the ith SNP, and δi is an indicator variable (0, 1) sam-
pled from a binomial distribution with parameters n and

π, where n is the number of SNPs and π is the fraction
of SNPs not included in the model. For the real dataset,
a prior beta distribution with parameters α = 108 and β
= 1010 was assumed for π so that, in practice, π was al-
most fixed to 0.99 [20]. For the simulated datasets, π as-
sumed two possible values, almost fixed to 0.99 as used
for the real data, or almost fixed to 0.999 assuming a
prior beta distribution with parameters α = 108 and β =
1011. This strategy, rather than letting π be estimated
from the data (Bayes Cπ), was adopted because it was
found to provide better results in QTL detection [2]. A
scaled inverse chi-squared prior distribution was as-
sumed for the variance of SNP effects (σ2g) and for the
residual variance (σ2e).
The SNP genotypes were coded as the number of cop-

ies of one of the SNP alleles, i.e., 0, 1, or 2. For Bayes C,
only scenario SII was evaluated because the adopted im-
plementation did not allow the inclusion of phenotypes
from non-genotyped animals. As in scenario SII of
WssGBLUP, vector y in Bayes C contained the pre-
adjusted phenotypes of AFC. Bayes C analysis was per-
formed using the Markov chain Monte Carlo algorithm
implemented in the GS3 software [20], running a single
chain with 550,000 iterations, a burn-in period of
50,000, and a thinning interval of 50 iterations.

Criteria for comparison
For the real data, the GWAS results were compared
based on SNP effect estimates and on the proportions of
variance explained by SNPs within consecutive 1-Mb
windows. A total of 2,525 windows spanning all auto-
somes were considered, with an average density of 132
± 44 SNPs per window. The top 10 windows that cap-
tured the highest proportion of variance explained by
the markers were identified for the different scenarios
and methods. The QTLdb database [21] was consulted
to assess the existence of previously described QTL re-
lated to reproductive traits and overlapping the top 10
windows and their neighboring 1-Mb windows (next to
the left and to the right). The UMD3.1 bovine genome
assembly [22] was used as the reference map. The pres-
ence of a previously described QTL in the QTLdb data-
base was double checked in the originally listed
references. Recent scientific publications were also
manually searched with the same purpose. The
SNPchiMp database [23] was used to standardize the
reference assembly (UMD3.1) across studies.
For the simulated data, the following statistics were

calculated: number of QTLs explaining 1 % or more of
the genetic variance (topQTL); number of top 1-Mb
marker windows accounting for the highest proportion
of variance explained by the markers (topMRKw) - this
number was set equal to topQTL so that the different
methods could be compared on the same basis; sum of
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the percentages of genetic variances explained by all
topQTL (Pvar_topQTL) and top marker windows
(Pvar_topMRKw); highest percentage of genetic variance
explained by a topQTL (Pvar_1stQTL) and a top marker
window (Pvar_1stMRKw), and the estimated number of
true QTLs (NtrueQTL), i.e., the number of topQTL
identified by a topMRKw located no more than 1 Mb
from a true QTL position.

Results and discussion
Linkage disequilibrium
Figure 1 shows the average LD decay for the real and
simulated HLD and LLD populations. The LD of the
simulated population with HLD was closer to the pat-
tern presented by taurine breeds [12] and was a conse-
quence of the large number of historical generations
(1,001 to 3,020) simulated to produce the bottleneck ef-
fect. For the simulated LLD population, the LD was
slightly higher than that obtained with the real data.
However, it was similar to the levels of LD observed by
Espigolan et al. [13] in another set of Nelore animals, in-
dicating adequacy of the LLD population to represent
real indicine populations.

Simulated data
The simulation process resulted in an average number
of QTLs explaining 1 % or more of the genetic variance
(topQTL) of 16.7 in the HLD population (Table 1).
Taken together, the topQTL explained 29.74 % of the
genetic variance, with the most important QTL explain-
ing on average 5.07 %. As shown in Table 1, the top
marker windows captured a smaller proportion of the
genetic variance when compared to the topQTL, except
for the analyses considering stronger shrinkage on SNPs
explaining lower variance (w3) or a lower proportion of
SNPs included in the model (π = 0.999). These results

are related in part to the imperfect LD between markers
and QTLs and to false positive signals being captured by
the markers.
As expected, stronger shrinkage on SNPs explaining

lower variance (from w1 to w3) and a higher propor-
tion of SNPs assumed unimportant a priori (π = 0.99
to π = 0.999) resulted in higher variance that could be
explained by the top marker windows. The method
providing the highest proportion of variance explained
by the top marker windows was Bayes C (π = 0.999)
(Table 1).
In general, irrespective of the method or scenario,

GWAS exhibited poor ability to map the topQTL (max-
imum of 2.9 out of 16.7 true QTLs; Table 1), indicating
that the available phenotypic and genotypic information
of the simulated population was not sufficient to prop-
erly map the QTLs. These results are in agreement with
Van den Berg et al. [2] who, in a simulation study, also
observed poor identification of QTLs for traits with low
heritability, a large number of QTLs and few records.
As can be seen in Table 1, the analyses using different

weights (w1 and w2) exhibited a similar ability to map
the QTLs. Furthermore, a higher percentage of variance
being explained by the top marker windows as a result
of stronger shrinkage on SNPs explaining lower variance
was not necessarily associated with better performance
of QTL mapping. For the HLD population, the
WssGBLUP analyses using w1 and w2 tended to outper-
form the analysis using w3 in terms of the detection of
true QTLs. Using a higher π also did not improve the
ability of Bayes C to detect QTLs (Table 1). It is im-
portant to emphasize that the ability of different
methods to map QTL depends on the genetic archi-
tecture of the trait; thus, our results cannot be ex-
trapolated, for example, to traits suspected to be
affected by major gene(s).

Fig. 1 Linkage disequilibrium (LD) decay of real data and two simulated populations (HLD and LLD). Average LD, expressed in r2, according to
varying distances between markers (Mb)
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The use of phenotypic information from non-
genotyped animals tended to increase the precision of
QTL detection, especially in the HLD population. The
analysis with the best result considering additional
phenotypic information was able to detect on average
17.4 % (2.9 out of 16.7) of the topQTL, whereas
WssGBLUP analysis ignoring this information detected
a maximum of 12.0 % (2.0 out of 16.7) of the topQTL
(Table 1). A possible explanation for this result is that
phenotypic information from non-genotyped animals
helps predict the genetic merit of genotyped animals (âg)
more precisely through relatedness. Since the SNP ef-
fects estimated with the WssGBLUP method are com-
puted as a function of âg, better predictions of âg would
ultimately result in better estimation of SNP effects.
For the LLD population, the importance of using add-

itional phenotypic information became less evident. As
shown in Table 2, although slightly better on average,
the ability of the SI scenario to detect QTLs (NtrueQTL)
was similar to that of the SII scenario. This finding
might be explained by the fact that animals of the LLD
population are to some extent less related than animals
of the HLD population. Thus, phenotypic information
from non-genotyped animals does not contribute to im-
prove the prediction of genetic merit of genotyped ani-
mals and, consequently, QTL mapping.
The number of QTLs explaining 1 % or more of the

genetic variance (topQTL) in the LLD population was
15.4. Taken together, the topQTL explained 24.32 % of

the genetic variance, with the most important QTL
explaining on average 3.19 %. Compared to the HLD
population, all methods and scenarios involving the LLD
population exhibited a poorer ability to detect true
QTLs. In addition, the pattern of the Bayes C results ob-
tained for the LLD population differed from that of the
HLD population. The average NtrueQTL of the analyses
assuming π = 0.999 was slightly higher than the value
obtained with the analyses using π = 0.99 (Table 2).
These results reinforce that the adequacy of a method to
detect QTL depends on the level of LD in the popula-
tion of interest.

Real data
As observed for the simulated data, the addition of
phenotypic information of non-genotyped animals also
influenced the estimates of SNP effects for the real data
(Fig. 2a, b and c). Although correlated, the SNP effects
estimated with WssGBLUP were not the same for sce-
narios SI and SII. The influence of using or ignoring the
phenotypes of non-genotyped animals became stronger
as the shrinkage on SNPs explaining lower variance in-
creased. For SNPs with more pronounced effects, the
SNP effects estimated with WssGBLUP in SI were more
similar to those of SII in w1 (Fig. 2a) compared to w2
(Fig. 2b) and w3 (Fig. 2c). This occurred because within
each scenario the weights of further iterations were cal-
culated as a function of the SNP effects estimated in the

Table 2 Average (SD) of marker and QTL related statistics of the
simulated population presenting low LD

Method/Scenarioa Pvar_topMRKw(%)b Pvar_1stMRKw(%)c NtrueQTLd

Bayes C (π = 0.99) 3.95 (0.58) 0.42 (0.10) 1.40 (0.97)

Bayes C (π = 0.999) 36.71 (12.35) 12.39 (11.93) 1.80 (1.62)

WssGBLUP/SIw1 2.73 (0.53) 0.25 (0.08) 2.00 (1.70)

WssGBLUP/SIw2 10.58 (1.59) 1.45 (0.37) 2.10 (1.29)

WssGBLUP/SIw3 26.80 (4.93) 4.51 (1.31) 1.20 (0.63)

WssGBLUP/SIIw1 2.82 (0.35) 0.26 (0.04) 1.90 (1.20)

WssGBLUP/SIIw2 12.05 (1.72) 1.69 (0.38) 1.90 (1.10)

WssGBLUP/SIIw3 31.60 (3.76) 5.66 (2.49) 1.10 (0.88)

True values Pvar_topQTL(%)b Pvar_1stQTL (%)c topQTLd

24.32 (4.92) 3.19 (0.61) 15.4 (2.32)

The averages are expressed over the ten replicates, using the Bayes C and
weighted single step GBLUP (WssGBLUP) analyses
aGWAS using (SI) or ignoring (SII) phenotypic information of non-genotyped
animals, applying different weights (w1, w2 and w3) for the SNP effects in the
WssGBLUP method. And using π = 0.99 and π = 0.999 in the Bayes C method
bGenetic variance (%) explained by the sum of variances accounted by top
marker windows (Pvar_topMRKw) and by the NtopQTLs (Pvar_topQTL)
cMaximum genetic variance (%) explained by a top marker window
(Pvar_1stMRKw) and by a topQTL (Pvar_1stQTL)
dEstimated number of true QTLs explaining 1 % or more of the genetic
variance (NtopQTL), and number of NtopQTLs identified by a top marker
window distant no more than 1 Mb from a NtopQTL (NtrueQTL)

Table 1 Average (SD) of marker and QTL related statistics of the
simulated population presenting high LD

Method/Scenarioa Pvar_topMRKw(%)b Pvar_1stMRKw(%)c NtrueQTLd

Bayes C (π = 0.99) 7.78 (0.99) 1.19 (0.63) 2.20 (1.23)

Bayes C (π = 0.999) 46.13 (14.13) 16.45 (17.86) 1.90 (1.29)

WssGBLUP/SIw1 5.16 (0.74) 0.54 (0.17) 2.90 (1.66)

WssGBLUP/SIw2 17.03 (3.11) 2.29 (0.94) 2.90 (1.79)

WssGBLUP/SIw3 38.07 (6.27) 7.30 (3.30) 1.30 (1.16)

WssGBLUP/SIIw1 5.30 (0.63) 0.59 (0.19) 2.00 (1.49)

WssGBLUP/SIIw2 18.76 (1.70) 2.65 (0.93) 1.90 (1.29)

WssGBLUP/SIIw3 39.31 (7.47) 7.82 (5.80) 0.90 (0.74)

True values Pvar_topQTL(%)b Pvar_1stQTL (%)c NtopQTLd

29.74 (4.88) 5.07 (2.36) 16.7 (2.83)

The averages are expressed over the ten replicates, using the Bayes C and
weighted single step GBLUP (WssGBLUP) analyses
aGWAS using (SI) or ignoring (SII) phenotypic information of non-genotyped
animals, applying different weights (w1, w2 and w3) for the SNP effects in the
WssGBLUP method. And using π = 0.99 and π = 0.999 in the Bayes C method
bGenetic variance (%) explained by the sum of variances accounted by top
marker windows (Pvar_topMRKw) and by the NtopQTLs (Pvar_topQTL)
cMaximum genetic variance (%) explained by a top marker window
(Pvar_1stMRKw) and by a topQTL (Pvar_1stQTL)
dEstimated number of true QTLs explaining 1 % or more of the genetic
variance (NtopQTL), and number of NtopQTLs identified by a top marker
window distant no more than 1 Mb from a NtopQTL (NtrueQTL)
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previous iteration [6]. Consequently, the differences be-
came greater in each subsequent iteration.
As observed by Wang et al. [6] and in our simula-

tion study, the total genetic variance was distributed
for a smaller number of SNPs as the SNP effects
were recomputed in the WssGBLUP method.

Consequently, solutions from w1 (Fig. 2a, d, and g)
were similar to those expected for a trait following an
infinitesimal model and solutions from w3 (Fig. 2c, f,
and i) were similar to those expected for an oligo-
genic trait. Unfortunately, when analyzing real data,
the WssGBLUP method does not allow to infer which

Fig. 2 Scatter plots of SNP effect estimates for GWAS of age at first calving in Nelore cattle. The plots are for Bayes C and Weighted single-step
GBLUP methods, considering (SI) or ignoring (SII) phenotypes from non-genotyped animals, under different weights (w1, w2 and w3) for the
SNPs. a = SIw1 x SIIw1; b = SIw2 x SIIw2; c = SIw3 x SIIw3; d = SIw1 x BayesC; e = SIw2 x BayesC; f = SIw3 x BayesC; g = SIIw1 x BayesC; h = SIIw2
x BayesC; i = SIIw3 x BayesC

Table 3 Top 10 windows explaining the highest proportion of variance of age at first calving

Rank Bayes C w1 w2 w3

SI SII SI SII SI SII

Ch/Wi/pvar1 Ch/Wi/pvar Ch/Wi/pvar Ch/Wi/pvar Ch/Wi/pvar Ch/Wi/pvar Ch/Wi/pvar

1st 18/5/0.40 18/5/0.23 18/5/0.23 18/5/1.13 18/5/1.17 13/71/4.59 23/27/9.66

2nd 8/107/0.34 5/16/0.19 17/50/0.21 8/107/0.84 5/115/1.16 23/27/3.26 12/3/6.43

3rd 17/50/0.29 8/107/0.19 23/25/0.20 6/108/0.80 8/107/1.08 12/3/3.24 13/71/3.42

4th 5/115/0.28 7/4/0.19 8/107/0.20 2/18/0.71 23/27/0.94 2/18/2.94 5/115/3.14

5th 7/4/0.27 17/50/0.18 7/4/0.18 22/2/0.68a 7/4/0.78 7/26/1.79 3/12/2.72

6th 3/28/0.24 23/28/0.17 23/29/0.18 7/4/0.68 17/50/0.67 4/77/1.77a 7/41/2.48

7th 23/27/0.22 5/13/0.17 3/28/0.16 24/09/0.68 6/44/0.61 3/12/1.75 2/18/2.39

8th 23/25/0.21 5/17/0.17 1/27/0.16a 5/115/0.56 14/63/0.59a 5/115/1.50 7/4/1.60

9th 14/63/0.20a 10/92/0.17a 23/28/0.16 6/16/0.56 12/3/0.55 6/108/1.45 21/23/1.57

10th 23/29/0.20 23/29/0.17 5/13/0.15 25/33/0.55 3/28/0.53 11/9/1.37 1/27/1.29a

The GWAS applied Bayes C method and weighted single step GBLUP considering (SI) or ignoring (SII) phenotypes from non-genotyped animals, under different
weights (w1, w2 and w3) for the SNPs. 1Ch = chromosome; Wi = 1 Mb window within the chromosome; pvar = proportion of variance explained by the SNPs within
the window. The most common windows (ranked as top 10 in at list four analysis) are highlighted in bold.
aWindow (or neighboring window) with a previous described QTL for bovine sexual precocity direct and indirect traits
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weight resulted in better estimates. Wang et al. [6]
recognized that their method calculates the weights in
a suboptimal manner and suggested some refine-
ments, for example, the use of Bayesian methods.
According to Gianola et al. [24], unraveling the gen-

etic architecture underlying a trait is not trivial even
when Bayesian methods are adopted, since the priors
dominate the inference in the case of few observa-
tions and when a large number of SNP effects need
to be estimated simultaneously. This statement is sup-
ported by the simulation results of our study in
which the prior value assumed for π determined the
shrinkage on SNP effect estimates. Estimation of π
from the data does not seem to be a good strategy
for GWAS purposes [2].
The Bayes C solutions were more similar to the

WssGBLUP solutions of scenario SII (Fig. 2g to i), in
which the same phenotypic information was used, than
those of scenario SI (Fig. 2d to f). For example, the associ-
ation between Bayes C and WssGBLUP SIIw1 solutions
was very high (Fig. 2g). This result suggests that, for the
present study, the use or not of additional phenotypic in-
formation had a greater influence on SNP effect estimates
than on the difference in the method. This evidence was
not as strong for the simulated data, particularly for the
LLD population. The sigmoidal shape of the graphs in
Fig. 2e, f, h and i indicates that weights w2 and w3 applied
in the WssGBLUP method resulted in more SNPs with
their effects shrunk to zero than Bayes C using π ≈ 0.99.
As also observed in the simulation study, stronger

shrinkage (w2 and w3) on SNPs explaining lower vari-
ance redistributed the variance and resulted in larger var-
iances that are explained by the (supposedly) most
important regions (Table 3). In SI, the proportion of
variance explained by the top 10 windows was 1.83 %,
7.18 % and 23.65 % for w1, w2 and w3, respectively.
These proportions were 1.84 %, 8.07 % and 34.70 % in
SII. For the Bayes C method, the top 10 windows ex-
plained 2.65 % of the genetic variance.
Although the most important genomic regions identi-

fied by the different analyses were not the same, some
coincidence was observed. Considering all seven ana-
lyses, 31 different windows were indicated as top 10

(Table 3). The most common windows identified by the
analyses were window 4-Mb on chromosome 7 (7/4)
identified as top 10 in six of the seven analyses; 5/115,
8/107 and 18/5 identified as top 10 in five analyses, and
17/50 and 23/27 identified as top 10 in four analyses.
WssGBLUP/SIIw2 and Bayes C were the only methods
that identified the six most common regions within the
top 10 windows.
Although the simulation results indicated a poor abil-

ity to detect QTLs, some regions identified as important
in the present study using real data coincided with re-
gions reported by different authors [25–28] for direct
and indirect traits of bovine sexual precocity (Table 4).
The identification of the same regions in different stud-
ies provides evidence that these regions are important
for the trait of interest.
Other studies have also identified important genes.

Waters et al. [29], studying the transcriptional regu-
lation process in the uterine endometrium of beef
heifers receiving special dietary supplementation, de-
tected many genes that were clustered in similar
functional groups. One of these genes is the TSPO
gene, which was found in a cluster described as “po-
tentially co-regulated genes with reproductive func-
tion and involved in steroid biosynthesis”.
Considering the importance of steroids for the regu-
lation of female reproduction, this gene could be an
important candidate gene associated with AFC in
Nelore cattle. The TSPO gene is located within win-
dow 115 of BTA5 (UMD3.1), which was identified as
a top window in all analyses, except for those using
w1 (Table 3).

Conclusions
Additional phenotypic information from non-
genotyped animals influences the results of GWAS.
Despite some coincidence, the most important gen-
omic regions for AFC in Nelore cattle, identified by
analysis using or ignoring phenotypes from non-
genotyped animals, were not the same. The simula-
tion results indicated that the inclusion of all available
phenotypic information, even that of non-genotyped

Table 4 Common regions reported by different authors for bovine sexual precocity direct and indirect traits

Ch/wi Traits reported in the region/Breed Authors

1/27 Age at first calving/Hanwoo Hyeong et al. [25]

14/63 Age at first calving/Hanwoo Hyeong et al. [25]

10/92 Heifer pregnancy/Angus Peters et al. [26]

22/2 Non-return of daughters at 56 days after insemination/Holstein Schrooten et al. [27]

4/77 Body condition scorea/Brahman and crossbreed Porto-Neto et al. [28]

Ch = Chromossome and wi =Window detected by Bayes C (π = 0.99) and wSSGBLUP (w1, w2 and w3) methods
aBody condition score was listed for indirectly affecting reproductive performance [30]
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animals, provides small improvement in the detection
of QTLs in GWAS of low heritability complex traits.
This improvement is expected to be less pronounced
in populations in which the level of LD is low.
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