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Abstract

Background: Lynch syndrome is a hereditary cancer syndrome associated with high risks of colorectal and
endometrial cancer that is caused by pathogenic variants in the mismatch repair genes (MLHT, MSH2, MSH6, PMS2,
EPCAM). Accurate classification of variants identified in these genes as pathogenic or benign enables informed
medical management decisions. Previously, we developed a clinical History Weighting Algorithm (HWA) for the
classification of variants of uncertain significance (VUSs) in BRCAT and BRCA2. The BRCA1/2 HWA is based on the
premise that pathogenic variants in these genes will be identified more often in individuals with strong personal
and/or family histories of breast and/or ovarian cancer, while the identification of benign variants should be
independent of cancer history. Here we report the development of a similar HWA to allow for classification of VUSs
in genes associated with Lynch syndrome using data collected through both syndrome-specific and pan-cancer

panel testing.

Methods: Upon completion of algorithm development, the HWA was tested using simulated variants constructed
from 79,214 probands, as well as 379 true variants. Positive (PPV) and negative predictive values (NPV) were

calculated on a per gene basis.

Results: 25,500 pathogenic and 50,500 benign simulated variants were analyzed using the HWA and the PPVs and
NPVs for each gene were greater than 0.997 and 0.999, respectively. The HWA was also evaluated using 100 trials
for each of the 379 true variants. PPVs of >0.998 and NPVs of >0.999 were obtained for all genes.

Conclusions: We have developed and implemented a HWA to aid in the classification of VUSs in genes associated
with Lynch syndrome. The work presented here demonstrates that this HWA is able to classify MLHT, MSH2, and
MSH6E VUSs as either benign or pathogenic with high accuracy.
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Background

Lynch syndrome (LS) is an autosomal dominant heredi-
tary cancer syndrome associated with high risks of colo-
rectal cancer (CRC) and endometrial cancer (EC). While
US population CRC and EC risks to age 70 are estimated
to be 5 % and 2.6 %, respectively, individuals with LS
have much higher risks of up to 82 % and 71 % [1, 2].
LS is also associated with increased risks for gastric,
urothelial, ovarian, small bowel, pancreatic, brain, and
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sebaceous gland cancers [1]. LS is caused by pathogenic
variants in the DNA mismatch repair (MMR) genes,
MLHI1, MSH2, MSH6, and PMS2, as well as deletions in
EPCAM which affect the transcription of MSH2 [1, 3]. It
is important to identify individuals who carry pathogenic
MMR gene variants so that they can be targeted for ag-
gressive medical management interventions aimed at the
prevention and/or early detection of LS-associated ma-
lignancies [2].

As is the case for many of the genes responsible for her-
editary cancer syndromes, analysis of the LS-associated
MMR genes frequently results in the identification of vari-
ants that can reliably be predicted to result in loss of
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function (LOF) of the encoded protein due to premature
truncation or other significant structural disruptions.
These LOF variants are presumed to be pathogenic, and
causative of LS [4]. However, it is also common to identify
genetic variants of uncertain clinical significance (VUSs),
for which pathogenicity cannot be assumed. Examples in-
clude missense variants altering a single amino acid,
changes for which the impact on mRNA splicing cannot
be reliably predicted, changes in known/suspected pro-
moter regions or the 5’-untranslated region, and in-frame
insertions or deletions of small numbers of amino acids.
In the majority of cases, it is not possible to establish the
clinical significance of VUSs without collecting and ana-
lyzing large amounts of clinical data linked to testing out-
comes in patients and families. This process can take
years, or even decades, particularly in the case of rare
variants.

Although the identification of a VUS in a LS gene is
not diagnostic of LS and should not be used as a basis
for medical management, a VUS result creates uncer-
tainty and anxiety that cannot be completely resolved
until a definitive classification is established. Individuals
carrying VUSs which are actually pathogenic may not re-
ceive appropriate medical care until the classification is
established, exposing them to risks that might otherwise
have been mitigated. Therefore, it is vitally important to
expand the tools available for accurate and timely variant
classification.

The need for improved variant classification tools has
become more urgent as hereditary cancer genetic testing
is increasingly performed with large panels of genes, or
even entire exomes, rather than smaller subsets of genes
associated with individual conditions like LS. The use of
panels including genes for multiple hereditary cancer
syndromes has already demonstrated that pathogenic
mutations in LS-associated genes are frequently identi-
fied in individuals who might not have been ascertained
for LS testing based on their personal and family histor-
ies of CRC and EC [5, 6]. While this validates the bene-
fits of a broader pan-cancer panel approach to testing, it
is inevitable that analysis of more genes leads to the
identification of more VUSs.

We have previously described the development and
validation of a clinical History Weighting Algorithm
(HWA) designed to aid in the reclassification of variants
identified in the BRCAI and BRCA2 genes, which are
associated with Hereditary Breast and Ovarian Cancer
syndrome (HBOC) [7]. The BRCAI/BRCA2 HWA is
based on the premise that pathogenic variants in these
genes will be identified more often in individuals with
strong personal and/or family histories of breast and/or
ovarian cancer, while the identification of benign vari-
ants should be independent of cancer history. We report
here on the development of a HWA to allow for

Page 2 of 8

classification of VUSs in LS-associated genes using data
collected through both syndrome-specific and pan-
cancer panel testing.

Methods

The development and implementation of the HWA was
performed as previously described for the BRCAI and
BRCA2 genes with relevant exceptions noted below [7].

Patient ascertainment

All patients were over the age of 18 and underwent clinical
genetic testing from a Clinical Laboratory Improvement
Amendments (CLIA) and College of American Pathology
(CAP) approved laboratory. Informed consent for testing
and results interpretation was obtained. Clinical informa-
tion was collected on the test request form. No additional
information was obtained directly from patients or pro-
viders for this study and all clinical testing samples used for
algorithm development and testing were anonymized. As
such, this study was not subject to any additional ethics
board review.

After informed consent, healthcare providers collected
patient blood, buccal or saliva samples for comprehen-
sive sequencing analysis of the MLH1, MSH2 and MSH6
genes. Analysis may have either been limited to these
three genes, or these genes may have been incorporated
into a larger 25 gene panel [5]. Large rearrangement
analysis and/or analysis of PMS2 may or may not have
been performed. The following clinical information was
collected: proband age, ethnicity, and cancer history, in-
cluding cancer type(s) and age(s) of diagnosis (if applic-
able). Affected relative cancer histories, including cancer
type(s) and age(s) of diagnosis were also documented.
Patient clinical conditions included in analysis were
colorectal, endometrial and/or ovarian cancers. Patients
affected with other, rare Lynch syndrome-associated
cancers, including hepatic, gastric, hepatobiliary, pancre-
atic, small bowel, and brain, were excluded from analysis
due to limited available data. Patients affected with
cancers unrelated to Lynch syndrome were included;
however, any unrelated cancers/conditions were not
considered in HWA development. Probands were ex-
cluded from analysis if personal and/or family history
were not provided or if the proband was known to carry
a pathogenic mutation or VUS in a Lynch-associated
gene, in addition to the variant being analyzed.

History weighting score calculation and analysis

For each patient in the dataset, the probability of carry-
ing a pathogenic mutation, conditional on personal and
family history, was estimated from observed proportions
in a clinical population and stored in gene-specific con-
ditional probability tables, as previously described [7].
For each proband, a likelihood ratio was calculated as
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the ratio of the posterior odds to the prior odds of the
proband not carrying a pathogenic mutation. Assuming
independence, these likelihood ratios (LR) were cumula-
tively multiplied for probands carrying the same variant
to obtain a history weighting score (HWS) for the vari-
ant (HWS = (LR;)(LR5)...(LR,)). For variants with a large
number of proband observations, only the most recent
100 probands were analyzed.

The variant-specific HWS was then used in a two-
hypothesis test: Two empirical cumulative distribution
functions (ECDF) were constructed from the logs of the
HWS of probands carrying either known pathogenic
mutations in the gene of interest (positive control
ECDF) or from probands in whom Lynch syndrome
pathogenic mutations and/or VUS in any disease-
associated gene were not identified (negative control
ECDF) [7]. The variant-specific HWS was compared
against each ECDF.

In the previous implementation, a minimum number of
qualifying proband observations of a variant was required
for utilization of the HWA. Minimum numbers were spe-
cific to the gene of interest and the type of call being
attempted (“pathogenic” or “benign”). ECDFs were gener-
ated from 100,000 positive or negative composite control
variants, which were constructed as previously described
[7]. Briefly, for each proband carrying a specific variant, a
minimum of 100 unique positive control individuals,
known to carry a pathogenic variant in the gene of interest
and matched by ethnicity and time of testing, were se-
lected. Controls were initially limited to individuals tested
within +180 days of the proband’s test date. If there were
insufficient ethnically “matched” controls identified within
the +180 window, ethnically “unmatched” controls from
within the same window were utilized, as time of testing
ascertainment biases were more significant than ethnicity
biases (data not shown). Ethnically “unmatched” controls
were also used for individuals not specifying ancestry. If
control numbers were still insufficient, the window was
expanded by another +180 days, iteratively. Benign (nega-
tive) control probands were similarly selected from
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individuals carrying either benign or no variants. Each
composite control variant, represented in the ECDFs by
its corresponding history weighing score, was composed
of the same number of control probands as the variant
of interest. The HWA made a benign call if the variant-
specific HWS was greater than the 99.95th percentile of
the positive control ECDF, and greater than the 5th
percentile of the negative control ECDF. The HWA
made a pathogenic call if the variant-specific HWS was
less than the 0.05th percentile of the negative control
ECDF, and less than the 95th percentile of the positive
control ECDF.

The current implementation wused gene-specific
thresholds defined in terms of standard deviations of the
control ECDFs and reduced the number of ECDF com-
posite control variants from 100,000 to 10,000. The
HWA made a benign call if the variant-specific HWS
was greater than the 99.5th percentile plus some number
of standard deviations of the positive control ECDF, and
greater than the 1st percentile of the negative control
ECDEF. The HWA made a pathogenic call if the variant-
specific HWS was less than the 0.5th percentile minus
some number of standard deviations of the negative con-
trol ECDEF, and less than 99th percentile of the positive
control ECDF (Table 1).

Gene and call type-specific standard deviation num-
bers were established by four two-fold cross validations
(8 folds total) utilizing the full dataset of 79,214 pro-
bands and analysis of simulated variants, which were
constructed as previously described [7]. Briefly, assuming
a pathogenic simulated variant composed of #n individ-
uals, # gene-specific variants were chosen uniformly at
random from true pathogenic variants. Then, one indi-
vidual was randomly chosen from each selected variant.
These # individuals were combined to simulate a single
pathogenic variant. In order to simulate unknown re-
latedness between probands, each proband after the first
selected proband was randomly duplicated with a 0.05
probability. Similar methodology was used to construct
benign simulated variants.

Table 1 Classification thresholds utilized by the history weighting analysis tool

Classification call

Log history weighting score compared to pathogenic composite controls

Log history weighting score compared to benign
composite controls

Pathogenic <99th Percentile
Weak Pathogenic®
Not Callable >99.5 Percentile + 0.7/0.9/1.0 SD
Weak Benign® >99.5 Percentile +0.7/0.9/1.0 SD
>99.5 Percentile +0.7/0.9/1.0 SD

All Other Variants

Benign

Indeterminate

299th Percentile and < 99.5 Percentile + 0.7/0.9/1.0 SD

<0.5 Percentile - 2.2/2.3/2.2 SD
<0.5 Percentile - 2.2/2.3/2.2 SD
<0.5 Percentile - 2.2/2.3/2.2 SD
20.5 Percentile - 2.2/2.3/22 SD
<1st Percentile

>1st Percentile

Gene-specific standard deviations (SD) are indicated for MLH1, MSH2 and MSH6, respectively

#Pathogenic and benign ECDF control curve thresholds must not overlap
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For each cross validation, the proband dataset was di-
vided randomly in half. Half A was used to construct
conditional probability tables, and simulated variants, as
described by Pruss et al. [7], were constructed from Half
B (and vice-versa). A minimum number of five qualifying
proband observations was required regardless of gene or
attempted call type. Pathogenic mutation prevalence esti-
mates of 24.2 %, 16.8 % and 12.9 % (data not shown) were
used for MLH1, MSH2, and MSH®6, respectively. Positive
(PPV) and negative (NPV) predictive values were adjusted
for prevalence as previously described for each gene and call
type with only pathogenic and benign calls being counted
towards PPVs and NPVs. Indeterminate calls were excluded
from additional analysis. It was assumed that pathogenic
mutations in the same gene confer identical risks.

Testing with true variants

One hundred trials were performed for each variant. For
each variant-specific trial, five probands carrying the vari-
ant of interest were randomly selected and an algorithm
call attempted. If an algorithm call was successful, the
variant was scored for that trial as either pathogenic or be-
nign. If there was insufficient data for a call, the proband
number was increased by 20 % and another call
attempted. This process was repeated until a call was suc-
cessful or all available probands were utilized. Previously
defined standard deviation thresholds were utilized for
analysis. PPVs and NPVs were calculated.

Results

Determination and verification of classification thresholds
The HWA was developed and tested using a dataset of
79,214 probands who had undergone clinical genetic
testing for mutations specifically in Lynch syndrome-
associated genes or who had opted for testing utilizing
a 25-gene pan-cancer panel [5]. The accuracy of the
HWA was dependent on the establishment of classifi-
cation thresholds, which were utilized by the calcula-
tion to call a variant pathogenic or benign. In this
study, two types of thresholds were utilized, one based
on pre-established ECDF percentiles and the other
based on standard deviations from these ECDF percentiles
(Table 1). Standard deviation thresholds were pre-
determined using four two-fold cross validations (8 folds
in total) performed on simulated variants. Standard devi-
ation classification thresholds resulting in average PPVs
and NPVs of >0.9975 across all 8 cross-validation folds
and with no predictive values less than 0.996 were selected
for algorithm implementation. These threshold values
were similar for each gene, ranging from 0.7 to 1.0 when
downgrading variants to 2.2 to 2.3 when upgrading vari-
ants. However, standard deviation numbers required to
upgrade a variant to pathogenic were more than double
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those required to downgrade a variant to benign. This was
due to the high a priori probability that a particular vari-
ant was most likely benign, which increased the likelihood
of a false positive when a pathogenic call was made.

Once classification thresholds were established, additional
testing with two-fold cross validation of the conditional
probability tables was performed utilizing simulated vari-
ants. PPVs and NPVs, adjusted for prevalence, were greater
than 0.996 and 0.997 for each gene, respectively (Table 2).

Proband numbers required for classification calling

Conditional probability tables were constructed using
the entire dataset of 79,214 probands, and 25,500 patho-
genic and 50,500 benign simulated variants were con-
structed for each gene. Simulated variants were analyzed
using the HWA and the number of probands required
to make a call were documented for each gene and vari-
ant type (Fig. 1). Fewer probands were required to make
a pathogenic or benign variant call for the MLHI and
MSH?2 genes in comparison to the MSH6 gene due to

Table 2 Results of two-fold cross validations using simulated

variants
Fold A Fold B
MLHT Variant type Variant type
Pathogenic  Benign Pathogenic  Benign
HWA Call  Pathogenic 24880 60 24836 35
Benign 176 49748 166 49765
No Call 444 692 498 700
Total Trials 25500 50500 25500 50500
PPV 0.9962 0.9978
NPV 0.9978 0.9979
MSH2 Variant Type Variant Type
Pathogenic  Benign Pathogenic  Benign
HWA Call  Pathogenic 24775 12 24262 14
Benign m 50329 164 50243
No Call 614 159 1074 243
Total Trials 25500 50500 25500 50500
PPV 0.9988 0.9986
NPV 0.9991 0.9987
MSH6 Variant Type Variant Type
Pathogenic  Benign Pathogenic  Benign
HWA Call  Pathogenic 23787 9 24014 25
Benign 180 50262 88 49754
No Call 1533 229 1398 721
Total Trials 25500 50500 25500 50500
PPV 0.9987 0.9965
NPV 0.9990 0.9995
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required for classification of benign variants in comparison to pathogenic variants for the same gene
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the relatively higher penetrance of these two genes,
allowing for easier separation of control ECDFs. For a
specific gene, fewer probands were required for a benign
call versus a pathogenic call as the a priori probability
that a variant was benign was significantly higher than
that of a variant being pathogenic. PPVs and NPVs for
each gene were greater than 0.997 and 0.999 for each
gene, respectively (Table 3).

True variant trials

379 anonymized true variants which had been previously
identified through clinical testing and classified using
other methodologies were used to assess the accuracy of
the HWA. Due to limited availability of variants with
sufficient proband numbers for HWA analysis, probands
were selected from the same dataset used for HWA de-
velopment. 100 trials were performed for each variant.
PPVs of >0.998 and NPVs of >0.999 were obtained for
all genes (Table 4). Results of representative variants for
each gene and variant call type are provided (Fig. 2).

Discussion

Timely and accurate reclassification of VUSs to more
definitive clinical categories is critical for patient care,
but gathering and interpreting the necessary clinical and
biological evidence can be a time-consuming and
resource-intensive process. As illustrated by the work
described here for the LS genes, the HWA provides a ro-
bust, accurate and quantitative tool applicable to a rela-
tively high proportion of variants, complementing other
traditional classification tools, each of which has signifi-
cant limitations. It is particularly important to remain

aware of these limitations now, as the shift to testing
strategies based on large gene panels, as well as whole
exomes/genomes, creates pressure to quickly resolve the
classification of the large number of variants identified.
Failing to correctly identify pathogenic variants deprives
patients of the opportunity to utilize appropriate options
for lowering the risk of disease. Conversely, incorrectly
classifying benign changes as pathogenic can result in
the misapplication of interventions which may carry sig-
nificant risks, morbidities and unnecessary costs.

Many limitations of traditional variant classification
techniques are addressed by the HWA method. Unlike
segregation analysis, the HWA does not rely on testing
multiple relatives from large pedigrees, and since it pools
data from multiple families, it is less likely to result in
the misclassification of a VUS due to its linkage to a dif-
ferent, undetected pathogenic change in a subset of car-
riers. Additionally, HWA is a more direct measure of a
variant’s clinical significance than other classification
techniques, including assays to measure mRNA splicing
analysis or protein function, such as mismatch repair in
the case of the LS genes. These analyses assume that the
measured functional effect directly translates to a clinical
outcome, but this is not always the case, and it is often
unclear how to interpret situations where only partial
loss of function is observed. The HWA more directly
measures a variant’s clinical impact by determining the
variant’s relationship to the relevant personal/ family his-
tories of carriers.

Algorithm development is often limited by access to
larger datasets of variants with definitive classifications.
For example, attempting to develop a classification
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Table 3 Results of final testing using simulated variants
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Table 4 Testing results for true variants (100 trials per variant)

MLHT Variant type
Pathogenic Benign
HWA Call Pathogenic 25162 17
Benign 61 50150
No Call 277 333
Total Trials 25500 50500
PPV 0.9989
NPV 0.9992
MSH2 Variant Type
Pathogenic Benign
HWA Call Pathogenic 24904 29
Benign 69 50306
No Call 527 165
Total Trials 25500 50500
PPV 0.9971
NPV 0.9995
MSH6 Variant Type
Pathogenic Benign
HWA Call Pathogenic 25038 6
Benign 23 50322
No Call 439 172
Total Trials 25500 50500
PPV 0.9992
NPV 0.9999

MLH1 Variant type
Pathogenic Benign
HWA Call Pathogenic 4890 2
Benign 7 4328
No Call 1403 1370
Total Trials 6300 5700
PPV 0.9986
NPV 0.9995
MSH2 Variant Type
Pathogenic Benign
HWA Call Pathogenic 2877 1
Benign 1 5388
No Call 822 2011
Total Trials 3700 7400
PPV 0.9991
NPV 0.9999
MSH6 Variant Type
Pathogenic Benign
HWA Call Pathogenic 1906 1
Benign 0 6955
No Call 1694 4244
Total Trials 3600 11200
PPV 0.9989
NPV 100.0000

Conditional probabilities tables were constructed based on the entire dataset
of 79,214 probands

algorithm using a dataset composed of previously classi-
fied missense variants requires the assumption that all of
the prior classifications are indeed correct. Since the
HWA is agnostic to variant type (i.e. missense, nonsense,
splicing, silent, etc.), we were able to develop the model
using probands carrying variants with relatively unam-
biguous classifications. Pathogenic proband controls
were largely composed of individuals carrying truncating
variants (i.e. nonsense and frameshift) or canonical splice
junction variants, which are generally assumed to be
pathogenic. Probands with pathogenic variants of other
types were included in this control set only if additional
highly significant data supported a pathogenic classifica-
tion. Likewise, negative control probands either carried no
known variants in any Lynch syndrome gene or carried var-
iants which are assumed to be benign. Most of these benign
variants were not predicted to result in an amino acid
change or were present in the general population at a fre-
quency too high to be causative of Lynch syndrome. The
ability to use a dataset composed of variants with “clear
cut” classifications is ideal for algorithm development.

Utilizing this dataset, we were able to extend a HWA vali-
dated for classification of variants in the BRCAI and
BRCA2 genes to the LS genes MLH1, MSH?2, and MSH6.
An additional advantage of HWA is that it can be used
for variants with relatively modest numbers of proband
observations (Fig. 1). HWA classification thresholds used
in the initial implementation for BRACI and BRCA2
were relatively rigid in that they utilized hard ECDF con-
trol percentiles as cut-offs, and a minimum number of
probands was required before a classification call was
attempted [7]. While this approach resulted in high ac-
curacy, it sometimes unnecessarily penalized variants
with lower numbers of proband observations. Previously,
we had repeatedly observed variants that did not have
the minimum number of probands required to be eli-
gible for analysis (data not shown). However, HWA
scores for these variants were so extreme, that inclusion
of the additional required probands statistically could
not have resulted in a different classification call made
by the HWA. The modification of the ECDF thresholds
used in this current study permits classifications with
significantly lower proband numbers, 5 being set as the
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Fig. 2 HWA graphs illustrating classification calls for select representative variants. The x-axis of each graph indicates the log of the history weighting

minimum required for analysis. For MLHI and MSH2,
>96 % of pathogenic or benign variant calls could be made
with < 20 proband observations of the specific variant, and
>63 % of calls could be made with < 10 proband observa-
tions. The relatively small number of probands required
positions the HWA as a powerful tool for the classification
of both common and relatively rare variants, in the con-
text of high volume clinical testing. For lower testing vol-
ume settings or extremely rare variants, other techniques
may still be necessary for the reclassification of VUS.

It is extremely difficult to identify low penetrance vari-
ants with current variant classification methods, and the

HWA shares this limitation. Our previously described
experience with known hypomorphic variants in BRCA1
and BRCA2 has shown that, even after observations in
large numbers of probands, these lower penetrance vari-
ants will not produce a HWS falling within the defined
threshold for either the negative or positive control
ECDE.” Variants behaving in this fashion are clearly sus-
pect for lower penetrance, but we cannot rule out the
possibility that there are some LS gene variants called as
benign with the HWA which are associated with low
penetrance for one or more Lynch cancers. It is arguable
as to whether this type of variant should be regarded as
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pathogenic for LS, since current medical management
guidelines for LS would probably not apply.

An additional consideration regarding the HWA is the
advantage conferred by utilizing data from only a single
high volume laboratory. Documentation of clinical his-
tory can be influenced by multiple factors, including the
design of the test requisition form, criteria used to ascer-
tain patients for testing, payor coverage criteria, provider
specialty, the structure of the healthcare system, patient
characteristics, etc. These factors will inevitably vary be-
tween laboratories. Basing the HWA on data from a sin-
gle laboratory increases the consistency of the data used
to generate a variant’s HWS matched to the negative
and positive control ECDFs, and it facilitates the identifi-
cation of related probands. Efforts to apply the HWA to
pooled data from multiple sources would most likely ei-
ther not be possible or would require significantly higher
thresholds and proband numbers to guard against incor-
rect classifications.

Conclusions

We have developed and implemented a history weight-
ing algorithm to aid in the reclassification of VUS in
Lynch syndrome genes to more definitive clinical cat-
egories, promoting improved patient care and better
clinical outcomes. The high accuracy of the HWA makes
this classification technique the gold standard for reclas-
sification of MLHI1, MSH, and MSH6 VUS in the clinical
diagnostic setting. Additional modifications of the HWA
may allow this tool to be extended to other autosomal
dominant high and moderate risk genes responsible for
increased cancer risk.
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