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Abstract

Background: Over the past decades, the prevalence of type 2 diabetes mellitus (T2D) has been steadily increasing
around the world. Despite large efforts devoted to better understand the genetic basis of the disease, the identified
susceptibility loci can only account for a small portion of the T2D heritability. Some of the existing approaches
proposed for the high dimensional genetic data from the T2D case–control study are limited by analyzing a few
number of SNPs at a time from a large pool of SNPs, by ignoring the correlations among SNPs and by adopting
inefficient selection techniques.

Methods: We propose a network constrained regularization method to select important SNPs by taking the linkage
disequilibrium into account. To accomodate the case control study, an iteratively reweighted least square algorithm has
been developed within the coordinate descent framework where optimization of the regularized logistic loss function is
performed with respect to one parameter at a time and iteratively cycle through all the parameters until convergence.

Results: In this article, a novel approach is developed to identify important SNPs more effectively through incorporating
the interconnections among them in the regularized selection. A coordinate descent based iteratively reweighed least
squares (IRLS) algorithm has been proposed.

Conclusions: Both the simulation study and the analysis of the Nurses’s Health Study, a case–control study of type 2
diabetes data with high dimensional SNP measurements, demonstrate the advantage of the network based approach
over the competing alternatives.

Keywords: Case–control association study, Network-based regularization, Regularized logistic regression, Type 2 diabetes,
Variable selection

Background
Type 2 diabetes mellitus (T2D), a chronic metabolic
disorder, has been a major public health concern for years.
An estimated 366 million cases of T2D over the world are
expected by the year 2030 [1]. To better understand T2D
etiology, significant efforts have been devoted to the
identification of genetic markers that may contribute to
the predisposition of the disease. The large scale genome–
wide association studies (GWAS) has proven to be power-
ful in finding the association between individual genetic
variant (like SNPs) and complex diseases, including type 2

diabetes. However, those identified SNPs from existing
studies can only account for about 10% of the genetic
variance of type 2 diabetes [2], which motivate the devel-
opment of more advanced statistical methodologies with
the hope to explain the missing heritability.
One major limitation shared by many of the previous

studies, especially the early ones, is that they are marginal
in the sense that one or a small number of genetic factors
are analyzed at a time. Since complex disease phenotypes
are associated with the joint effects of multiple genetic fac-
tors, signals with weak or moderate marginal but strong
joint effects may not be captured by the marginal analysis.
As unprecedented amount of high dimensional omics

data has been generated from high–throughput profiling
studies, extensive regularized variable selection methods
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such as LASSO [3] and elastic net [4], have been
proposed to identify genes that are associated with
disease phenotypes, with the genes being treated as vari-
ables. More recently, to incorporate the interconnection
information, or network structure existing among gen-
etic variants into the selection procesure, the network–
constrained regularization approaches have been devel-
oped, as in Li and Li [5] and Huang et al. [6], among
many others. In particular, Huang et al. [6] developed
the sparse Laplacian shrinkage (SLS) penalty built upon
the combination of MCP (Zhang [7]) and Laplacian
quadratic associated with a graph. They also demon-
strated that in high dimension settings with p≫ n under
reasonable assumptions, SLS is selection consistent and
equivalent to the oracle Laplacian shrinkage estimator
with high probability.
This study has been partially motivated by analyzing

the case control data from the Nurses’s Health Studies
(NHS) and studies alike. As a major component of the
Gene Environment Association Studies Initiative, NHS
was launched in 1976 in order to identify important
genetic variants related to type 2 diabetes and gene–trait
association under environmental exposures [8]. To ac-
commodate the linkage disequilibrium (LD) existing
among SNPs, we adopt a network measure and incorp-
orate it in SLS. We further extend the SLS into the
penalized logistic regression model for the analysis of
the T2D case control data, and develop an efficient co-
ordinate descent based algorithm. Compared with the
alternatives, the proposed method can borrow strength
from the correlation among SNPs and leads to more
meaningful identification of important ones.
We first introduce the data and model settings, and

describe the proposed approach. An efficient computa-
tional algorithm is subsequently developed. Simulation
study demonstrates the significant advantage of the pro-
posed approach over multiple competing alternatives. We
analyze NHS type 2 diabetes data with high dimensional
SNP measurements.

Methods
Denote the ith subject by using the subscript i. Let (Xi, Yi),
i = 1,…, n be n independent and identically distributed
random vectors. Yi is the binary response variable where
yi = 1 indicating the case of disease, and 0 otherwise. Xi

is the p–dimensional design vector of SNPs. Assuming
that yi follows a binomial distribution, then

P yi ¼ 1jηi
� � ¼ πi ¼ eηi

1þ eηi

where ηi is the ith component of η = Xβ, and β = (βi,
…, βp)

T is the regression coefficient vector. The corre-
sponding loss function is the negative log-likelihood

L ηð Þ ¼ 1
n

Xn
i¼1

Li ηi
� � ¼ −

1
n

Xn
i¼1

log P Y i ¼ yijηi
� � ð1Þ

Regularized logistic regression
As the T2D disease status is only affected by a
small number of important SNPs that are associated
with the disease, and the dimensionality of the total
number of SNPs is much larger than the sample
size n, the problem is of a “large p, small n” nature.
Regularization is a natural tool for such type of
problem appropriate in both biological and statis-
tical sense. By imposing penalty function to the loss
function in (1), we have the following penalized
likelihood

Q βð Þ ¼ −
1
n

Xn
i¼1

yi logπi þ 1−yið Þ log 1−πið Þf g þ P β; λ; γÞð ð2Þ

where P(β; λ, γ) is the penalty function with tuning
parameters λ and γ. A seemingly straightforward choice
for the penalty is

P β; λ; γð Þ ¼
Xp
m¼1

ρ βm; λ1; γ
� �

where ρ t; λ1; γð Þ ¼ λ1

Z
0

tj j
1− x

γλ1

� �
þdx is the MCP pen-

alty with tuning parameter λ1 and regularization param-
eter γ (Zhang [7]).
For the SNPs, MCP is imposed on their regression

coefficients. Penalized regression will shrink some
components of coefficient vector β to zero, which in-
dicates that the corresponding SNPs are not associ-
ated with the disease status y. SNPs with nonzero
coefficients are treated as important variants. A
major limitation of MCP here is that it ignores the
interconnections among SNPs, while the high correl-
ation among genetic variants, including SNPs, have
been widely observed and reported due to LD. We
use a network structure to describe the correlation
pattern among SNPs. In a SNP network, a node
corresponds to a SNP, and if the two SNPs are statis-
tically or biologically associated, the two correspond-
ing nodes are connected. To incorporate the network
information, we adopt the sparse Laplacian penalty
from Huang et al. [6] as follows:

P β; λ; γð Þ ¼
Xp
m¼1

ρ βm; λ1; γ
� �þ λ2

X
1≤m<k≤p

amkj j βm− sgn amkð Þβk
� �2

ð3Þ
where |amk| is the measure of connection intensity be-
tween SNP xm and xk. The first term of (3) is a summa-
tion of MCPs, promoting sparsity in the estimated
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model. The role of the second term is to encourage
smoothness among the coefficient profiles of the related
SNPs. Furthermore, the second term can be associated
with a Laplacian matrix for a properly defined undir-
ected weighted graph corresponding to the SNPs. As
shown in Huang et al. [6], the penalty in (3) is capable of
taking correlation structure into account without intro-
ducing extra bias, consequently it outperforms a large
class of network–constrained penalty functions. The
oracle property has also been rigorously established.
Therefore, we choose (3) and extend it to the penalized
logistic regression model for the analysis of case control
type 2 diabetes data.
The network adjacency measure, |amk|, is perhaps the

most crucial characteristic in a network to quantify
strength of connection between any two nodes (Zhang
and Horvath [9]). Denote A = (amk, 1 ≤m, k ≤ p) as the
adjacency matrix, and let rmk be the corresponding Pear-
son correlation coefficient. We propose to use amk = rmk

α ⋅
I{ | rmk| > rc} with α =5. This measure keeps the strong
correlations while downweighing the weak ones. In
addition, it guarantees that amk and rmk have the same
sign. Compared with the threshold rc which determines
whether the edge joins the corresponding nodes in a net-
work, the power only denotes the relative strength of con-
nection, and does not influence the network structure.
Thus α can be chosen via an ad hoc fashion. The correl-
ation cutoff rc is calculated based on the Fisher transform-
ation zmk = 0.5 log((1 + rmk)/(1 − rmk)). If the correlation
between mth and kth predictor is zero, then

ffiffiffiffiffiffiffiffi
n−3

p
zmk ap-

proximately follows a standard normal distribution N(0,1),
which can be used to determine a threshold c for

ffiffiffiffiffiffiffiffi
n−3

p
zmk .

Subsequently, the corresponding threshold for rmk is

rc ¼ exp 2c=
ffiffiffiffiffiffi
n−3

pð Þ−1
exp 2c=

ffiffiffiffiffiffi
n−3

pð Þþ1
. Such a network is weighted and

sparse. We acknowledge that there are other ways of
constructing the network adjacency matrix, and con-
jecture that they are equally applicable. Since our
main purpose is not to compare the constructions of
different networks, we focus on this particular net-
work structure in this paper.

Computation
Huang et al. [6] adopted a coordinate descent algo-
rithm to obtain the sparse Laplacian shrinkage esti-
mate when the continuous response variable follows
a normal distribution. However, this cannot be ap-
plied to a binary response directly. We develop a co-
ordinate descent based iteratively reweighed least
squares (IRLS) algorithm for the logistic regression,
which yields a form the same as the quadratic ap-
proximation to the penalized objective function
based on Taylor expansion about current estimates.

Denote β(d) as the value of the regression coefficients
at the beginning of the dth iteration, the quadratic
approximation to (2) is

Q βð Þ≈− 1
2n

~y−Xβð ÞTW ~y−Xβð Þ þ P β; λ; γð Þ

where W is an n × n diagonal matrix of weights with
elements wi = πi(1 − πi), and ~y is the working response,
defined as

~y ¼ Xβ dð Þ þW −1 y−πð Þ

where π = (π1,…, πn)
T is evaluated at current parameters

β(d). The residuals after each iteration can be expressed as

r ¼ ~y−Xβ dð Þ ¼ W −1 y−πð Þ
Let vm = n− 1Xm

TWXm. For a standardized design matrix
X, we can have

zm ¼ n−1 XT
mW ~y−X−mβ−m

� � ¼ vm n−1XT
mr þ βm

�
dð ÞÞ

Here, vm needs to be re-weighted in every iteration,
leading to increased computational cost. As the Hessian
terms can be approximated by an exact upper bound

Table 1 Simulation for SNP data: mean(sd) of true positives (TP)
and false positives (FP) based on 100 replicates. Upper panel:
(n, p) = (500, 750); Lower panel: (n, p) = (1000, 1500)

A1 A2 A3 A4

AR
ρ = 0.1

TP
FP

41.04(7.07)
37.02(28.65)

39.28(7.40)
32.02(27.49)

61.14(2.86)
169.38(18.79)

53.30(4.23)
83.58(21.61)

AR
ρ = 0.5

TP
FP

64.86(6.89)
32.12(30.54)

41.46(8.62)
21.84(24.23)

64.66(2.89)
136.22(11.93)

57.22(3.96)
60.10(11.60)

AR
ρ = 0.9

TP
FP

74.98(0.14)
9.74(13.31)

31.22(4.57)
4.30(3.90)

64.18(2.68)
88.84(12.52)

51.98(3.11)
30.52(9.67)

Block
ρ = 0.1

TP
FP

47.70(8.62)
61.40(77.21)

45.82(8.92)
52.22(71.40)

62.70(2.75)
162.66(18.66)

55.70(4.20)
79.52(19.80)

Block
ρ = 0.5

TP
FP

67.92(6.35)
31.40(22.18)

39.62(7.05)
15.74(13.65)

65.30(3.23)
116.16(13.10)

57.00(3.68)
43.96(13.36)

Block
ρ = 0.9

TP
FP

72.06(4.16)
12.22(16.30)

30.28(6.08)
5.08(6.22)

64.08(2.29)
83.30(12.76)

50.94(3.44)
27.86(10.81)

AR
ρ = 0.1

TP
FP

94.20(12.15)
77.10(50.90)

94.16(12.28)
77.62(51.35)

126.22(4.55)
317.70(22.91)

113.78(6.27)
165.26(31.10)

AR
ρ = 0.5

TP
FP

142.68(3.61)
28.12(25.50)

84.28(10.71)
30.82(26.16)

130.12(3.79)
233.08(16.09)

116.66(4.48)
103.42(20.82)

AR
ρ = 0.9

TP
FP

149.96(0.20)
33.86(33.25)

64.40(9.54)
9.26(9.25)

124.06(3.05)
105.46(17.51)

98.96(4.46)
25.74(9.43)

Block
ρ = 0.1

TP
FP

101.22(12.37)
72.18(45.32)

98.96(13.55)
67.76(46.36)

132.46(3.82)
274.58(18.19)

121.84(4.57)
129.70(19.58)

Block
ρ = 0.5

TP
FP

145.68(5.93)
62.78(58.00)

75.84(9.18)
16.22(13.47)

129.94(3.13)
144.26(17.69)

114.92(4.25)
45.00(12.74)

Block
ρ = 0.9

TP
FP

147.40(8.42)
27.56(30.66)

56.32(9.93)
6.36(7.59)

120.78(4.10)
81.14(13.58)

92.62(6.34)
19.60(9.02)
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Fig. 1 ROC curves for SNP data. ROC curves corresponding to Table 1

Ren et al. BMC Genetics  (2017) 18:44 Page 4 of 12



(Krishnapuram et al. [10]), we can set wi all equal to 1
4.

Define um and tm at iteration d as

um ¼ zm þ λ2
Xp

k¼mþ1

amkj jβk

tm ¼ 1
4
þ λ2

Xp

k¼mþ1

amkj j
ð4Þ

Then the close form update of β(d + 1) can be obtained as

β dþ1ð Þ
m ¼

S um; λ1ð Þ
tm−1=γ

if umj j ≤ tmγλ1
um
tm

if umj j > tmγλ1

8><
>:

ð5Þ

where S(⋅) is the soft thresholding function. With fixed
tuning parameters λ1 and λ2, the coordinate descent
algorithm proceeds as follows.

The convergence is achieved when the L2 difference
between β estimates from two contiguous iterations is
smaller than a predefined threshold. Tuning parameters
λ1 and λ2 control the sparsity in SNP selection and
smoothness among coefficient profiles, respectively.
They can be chosen from cross validation based methods.
We search over a two-dimensional discrete grid of values
for λ1 and λ2, and select the optimal pair in terms of
testing misclassification rate. In penalized logistic regres-
sion, regularization parameter γ needs to be larger
than 1/wi for MCP. We set it as 4.5 in the simulation
study since it has been observed that smaller γ yield
slightly better results.

Results
Simulation
We evaluate the performance of the proposed approach
through extensive simulation studies. Both categorical
and continuous predictors are considered, and they cor-
respond to SNP and gene expression data, respectively.
We first generate a n × p matrix of gene expressions,

where n = 500 and p = 750, from a multivariate normal
distribution. For the 750 genes, there are 100 clusters
with 5 genes per cluster. The gene expressions have been
marginally standardized. We consider two correlation
structures. (1) the auto-regression (AR) structure, in
which gene i and j within the same cluster have correl-
ation coefficients ρ|i − j|, and they are independent clus-
ter–wisely. (2) the block structure, in which the within
cluster correlation coefficient is ρ, and gene expres-
sions in different clusters are independent. We con-
sider ρ =0.1, 0.5 and 0.9 for both structures. In
addition to the 500 by 750 matrix of gene expres-
sions, a 1000 by 1500 matrix has also been generated
with 150 clusters and 10 genes per cluster following
the same correlation structures. The SNP data are
simulated by dichotomizing expression values of each
gene at the 1st and 3rd quartiles, with the 3–level (2,1,0)
for genotypes (AA,Aa,aa) respectively. For both combina-
tions of (n, p), (500, 750) and (1000, 1500), 10% of clusters
are randomly selected to have nonzero regression coeffi-
cients, which are generated from Unif [0.25,0.75]. The
binary response can subsequently be simulated. We
choose the tuning parameters based upon the prediction

Table 2 Simulation for Gene expression data: mean(sd) of true
positives (TP) and false positives (FP) based on 100 replicates.
Upper panel: (n, p) = (500, 750); Lower panel: (n, p) = (1000,1500)

A1 A2 A3 A4

AR
ρ = 0.1

TP
FP

43.50(8.64)
49.50(45.54)

40.48(8.48)
35.58(32.92)

61.46(2.92)
163.08(15.56)

53.50(4.59)
76.92(19.67)

AR
ρ = 0.5

TP
FP

68.74(9.23)
29.64(25.13)

38.56(7.04)
17.06(15.23)

64.46(2.56)
127.36(17.11)

55.54(3.69)
54.94(16.08)

AR
ρ = 0.9

TP
FP

74.34(2.00)
10.48(13.50)

27.68(5.58)
3.50(3.72)

65.30(1.62)
76.82(14.10)

45.50(3.11)
23.80(9.96)

Block
ρ = 0.1

TP
FP

44.92(8.75)
40.58(40.79)

42.92(7.96)
30.84(24.45)

64.20(2.91)
161.44(13.32)

56.82(3.70)
77.24(17.99)

Block
ρ = 0.5

TP
FP

72.72(4.01)
22.08(30.01)

38.94(6.86)
15.06(18.84)

65.36(2.84)
107.18(12.58)

56.88(3.54)
38.70(11.31)

Block
ρ = 0.9

TP
FP

70.12(4.29)
5.88(10.48)

25.24(4.38)
1.92(1.52)

64.62(2.58)
75.42(11.49)

43.50(3.22)
23.16(7.77)

AR
ρ = 0.1

TP
FP

88.86(15.09)
69.58(56.10)

86.72(15.32)
61.56(49.57)

126.16(4.51)
312.28(24.32)

113.38(5.89)
159.98(27.91)

AR
ρ = 0.5

TP
FP

146.14(2.65)
43.62(37.20)

81.68(12.44)
24.20(20.15)

129.88(3.27)
217.86(17.82)

115.14(4.93)
93.60(16.22)

AR
ρ = 0.9

TP
FP

149.42(2.26)
27.98(37.43)

52.64(7.78)
4.22(5.28)

122.50(4.03)
97.06(14.09)

82.42(5.24)
23.26(8.58)

Block
ρ = 0.1

TP
FP

91.70(12.04)
47.36(31.01)

88.92(12.70)
41.96(28.95)

131.92(3.26)
264.58(20.20)

120.76(4.32)
124.84(17.73)

Block
ρ = 0.5

TP
FP

148.38(4.95)
24.78(29.56)

74.02(10.59)
17.46(12.93)

127.70(3.70)
127.80(17.06)

110.94(4.60)
37.10(12.48)

Block
ρ = 0.9

TP
FP

145.10(4.85)
18.54(32.97)

45.60(7.37)
2.74(2.47)

117.90(3.71)
69.06(12.25)

73.56(4.73)
14.06(5.94)
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performance of the corresponding model in an independ-
ently simulated validation dataset.
For comparison, we consider three alternative ap-

proaches, LASSO, elastic net and MCP. LASSO is perhaps
so far the the most widely used penalization approach for
the analysis of genomic data. In contrast to LASSO, elastic
net encourages the grouping effects among genomic
features. MCP is equivalent to the proposed approach

when λ2 = 0 in (3). Comparison with MCP as well as
elastic net will directly demonstrate the advantage of each
penalty term in the formulation (3). For convenience, we
term the network approach, MCP, elastic net and LASSO
as A1, A2, A3 and A4, respectively.
Simulation results for the SNP data are tabulated in

Table 1. We can observe that from the upper panel
where (n, p) = (500, 750), A1 (network) and A2 (MCP)

Fig. 2 ROC curves for Gene Expression data. ROC curves corresponding to Table 2
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have similar performance when correlation is low. As
correlation increases, the proposed one starts to outper-
form A2. For example, when ρ = 0.9 under AR correl-
ation structure, A1 can identify most of the 75 true
positives, 74.98 (sd 0.14), with a small number of false
positives 9.74 (sd 13.31). A2 identifies similar number of
false positives with a much lower number of true posi-
tives 31.22 (sd 4.57). Out of all the four approaches, A3
(elastic net) always has the largest false positives and A4
(LASSO) is inferior to A2 in general. Consistent patterns
have been observed under other scenarios in Table 1. In
addition, we examine the performances using the ROC
curves. The ROC curves corresponding to Table 1 are
given in Fig. 1, which clearly show that A1 outperforms
A2–4. Additional simulation results for gene expression
data are given in Table 2 and Fig. 2, which also demon-
strate the merit of the network approach over the alter-
natives when moderate to strong correlation exists
among genetic variants. To further examine the per-
formance of the proposed approach, we also conduct
simulation under n = 500 and p = 1500. Results are
summarized in Table 3 and Fig. 3. Both the identifica-
tion accuracy in Table 3 and ROC curves in Fig. 3
demonstrate the superiority of the proposed A1 over
alternatives.
In addition to the identification results and the ROC

curves, we acknowledge that plots of piece-wise solution
path can be adopted to investigate the similarity and dif-
ference among different regularization methods, espe-
cially when the number of predictors (features) entering
the model is moderate or small. In our simulation study,
the number of important SNPs and gene expressions is
large, therefore such an approach is not pursued.

Real data analysis
As described in the background section, we analyze
Nurses’ Health Study (NHS), a case control study of type
2 diabetes which are part of the Gene Environment
Association Studies. Detailed information of the datasets
are available from Hu et al. [11]. We focus on SNPs in
several important pathways potentially related to T2D.
They are the Wnt signaling pathway, cell cycle pathway
and p53 signaling pathway. After cleaning the data
through matching phenotypes and genotypes, removing
SNPs with minor allele frequency (MAF) less than 0.05
or deviation from Hardy–Weinberg equilibrium, the
working dataset contains 3391 subjects. There are 5079
SNPs in the Wnt signaling pathway, and 3793 SNPs in
the cell cycle and p53 signaling pathway.
We first apply all the 4 methods on the Wnt signaling

pathway. The A1–4 identify 834, 841,847 and 848 SNPs
that are associated with T2D, respectively. As a represen-
tative example, we examine closely gene DAMM1 and

its subnetwork. DAMM1 is reported to be associated
with diabetic nephropathy, a common complication of
type 2 diabetes (Sapienza et al. [12] and Kavanagh et al.
[13]). The upper panel of Fig. 4 shows the subnetwork of
DAMM1, where the red nodes indicate the SNPs from
DAMM1. In the subnetworks, thickness of edges de-
notes the strength of correlation between SNPs. It can
be clearly observed that the proposed approach has
identified much more highly correlated SNPs, since the
interconnections among SNPs have been accommodated
by the approach that incorporates the network structure
information. The network approach (A1) selects 19
SNPs and 15 belong to DAMM1, while other 3 ap-
proaches only identify 9,6 and 6 SNPs correspondingly.
A1 leads to a more tightly connected network, which is
consistent with our findings in the simulation study that
it promotes the interconnections among SNPs. Further-
more, the proposed one identifies SNP rs1252906,
which plays a crucial role in the progression of ne-
phropathy (Kavanagh et al. [13]). Other methods fail to
identify this important SNP. The genes corresponding
to the SNPs in the subnetworks are given in the upper
panel of Fig. 5.

Table 3 Simulation for (n, p) = (500, 1500): mean(sd) of true
positives (TP) and false positives (FP) based on 100 replicates.
Upper panel: SNP data; Lower panel: gene expression data

A1 A2 A3 A4

AR
ρ = 0.1

TP
FP

48.52(12.31)
78.29(41.61)

37.57(12.59)
64.29(51.34)

57.55(14.03)
95.11(36.75)

46.60(14.58)
63.32(30.63)

AR
ρ = 0.5

TP
FP

126.91(10.98)
78.69(33.05)

59.37(10.48)
54.19(29.45)

92.57(6.94)
139.60(27.36)

78.83(6.70)
87.37(17.78)

AR
ρ = 0.9

TP
FP

148.43(9.83)
61.36(48.01)

47.82(12.45)
21.41(60.62)

105.29(5.34)
135.23(20.22)

80.05(4.81)
80.03(12.34)

Block
ρ = 0.1

TP
FP

67.16(12.67)
91.44(40.23)

52.23(11.89)
63.03(42.99)

81.51(7.92)
124.56(28.34)

70.51(7.25)
82.16(19.66)

Block
ρ = 0.5

TP
FP

146.63(7.27)
81.27(63.42)

57.24(13.70)
32.85(42.69)

105.11(4.96)
143.77(19.63)

89.64(4.46)
87.04(12.76)

Block
ρ = 0.9

TP
FP

143.11(5.33)
28.85(41.83)

43.92(10.42)
11.99(19.14)

105.69(5.16)
133.15(20.07)

82.12(5.11)
75.53(12.27)

AR
ρ = 0.1

TP
FP

47.41(10.56)
80.08(38.04)

45.27(11.08)
73.56(39.11)

61.12(12.18)
100.51(34.81)

49.37(13.06)
64.09(28.80)

AR
ρ = 0.5

TP
FP

137.85(9.22)
74.79(30.71)

50.61(9.79)
31.28(14.74)

96.19(6.07)
142.99(25.91)

81.23(5.95)
91.92(16.12)

AR
ρ = 0.9

TP
FP

148.80(3.65)
40.33(31.15)

38.57(9.09)
7.09(10.13)

107.95(4.73)
129.96(17.41)

70.91(4.23)
77.48(11.09)

Block
ρ = 0.1

TP
FP

60.37(11.61)
83.04(48.75)

53.43(12.30)
60.64(41.84)

86.67(6.85)
133.73(26.74)

74.79(5.96)
88.28(18.60)

Block
ρ = 0.5

TP
FP

140.67(14.14)
73.60(66.06)

53.89(13.26)
27.35(31.89)

104.83(4.67)
138.88(17.85)

86.65(4.25)
82.63(13.30)

Block
ρ = 0.9

TP
FP

145.12(5.00)
19.43(23.30)

33.07(7.61)
3.79(6.54)

106.67(5.81)
123.37(19.61)

64.76(4.71)
67.60(9.78)
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The analysis has also been carried out on the SNPs
combined from the cell cycle pathway and p53 signaling
pathway. There are 814, 828, 827 and 829 SNPs identi-
fied by A1–4 correspondingly. We focus on the subnet-
work of gene CASP9, which is one of the key players in
inducing cell apoptosis (Cnop et al. [14]). Previous stud-
ies show that CASP9 is associated with diabetic retinop-
athy, a common and serious complication of type 2

diabetes (Baharian et al. [15] and Looker et al. [16]). In
the NHS study, CASP9 has a total of 11 SNPs. The sub-
network of CASP9 is shown in the lower panel of Fig. 4.
The proposed method identifies a subnetwork which has
7 SNPs from CASP9, and the other 7 SNPs from gene
CELA2A, CELA2B and DNAJC16. Both CELA2A and
CELA2B encode protein elastases, which hydrolyze elas-
tin and many other proteins. DNAJC16 is a member of

Fig. 3 ROC curves for (n, p) = (500,1500). ROC curves corresponding to Table 3
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Fig. 4 Subnetworks of DAAM1 (upper panel) and CASP9 (lower panel). SNPs connected in the network are joined with edges
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Fig. 5 Subnetworks of DAAM1 (upper panel) and CASP9 (lower panel). Gene names are corresponding to the SNP id in Fig. 4
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heat shock protein family (Hsp40). And it has been
found in multiple studies that Hsp40 are related to cell
apoptosis in type 2 diabetes (Laybutt et al. [17] and
Chien et al. [18]. It is very interesting that CELA2A,
CELA2B, CASP9 and DNAJC16 locate on chromosome
1 as a cluster. CELA2A is also identified by the rest 3
approaches, while CELA2B is only not in the subnet-
work identified by A2(MCP). Overall, the network
effects of CASP9, CELA2A, CELA2B and DANJC16 on
type 2 diabetes, especially diabetic retinopathy, worth
further investigations.

Discussion
In this paper, we develop a network–based regularized
logistic regression model for the analysis of high dimen-
sional genetic data and identification of important SNPs
in the case–control study of type 2 diabetes. Advancing
from existing studies, the proposed one has desired
property to take correlation pattern among genetic vari-
ants into account without incurring extra bias. We pro-
vide an efficient iteratively reweighed least squares
(IRLS) algorithm within the coordinate descent frame-
work. The computational cost has been significantly re-
duced due to convenient approximations to the original
regularized log likelihood function. Simulation demon-
strates that the proposed one outperforms closely related
alternatives.
Computation feasibility is an important practical con-

sideration for high–dimensional regularization methods.
In simulation, the CPU time (in minutes) of applying the
proposed method on 100 replicates of simulated SNP
data with n = 1000, p = 1500 and AR structure is 218.3
on a regular laptop. In the case study, the CPU time for
analyzing the Wnt pathway with n = 3391 and p = 5079
is 70.16. The proposed method can be potentially ap-
plied to larger datasets with a reasonable computation
time. It has been widely acknowledged in Fan and Lv
[19], Jiang et al. [20] and studies alike that regularization
methods have to be coupled with screening strategy to
accommodate ultra-high dimensional data from for
instance, large-scale GWAS studies. The proposed
network constrained regularization method can be im-
plemented in such a two stage framework. Further inves-
tigations are intriguing but beyond the scope of this
paper, and will be postponed to the future.
The methodological development in this article has

been partially motivated by the analysis of the datasets
from Nurese’s Health Study (NHS). In the past, this
study has been extensively investigated under marginal
methods ([21] and [22]) which ignores the joint effects
of the SNPs. In addition, although studies like Wu, Cui
and Ma [23] consider the effects of SNPs jointly within
the penalization framework for continuous phenotypes,

the correlation among the SNPs still have not been fully
taken into account. The proposed approach quantifies
the strength of correlation among SNPs via network
structure and is able to incorporate the correlation in
the identification of important SNPs. In the case
study, we have identified interesting subnetworks with
respect to genes closely related to T2D. In this work,
we have focused on methodological development.
More thorough bioinformatics and functional investi-
gations will be needed in the future to fully under-
stand the identified results.

Conclusions
The network-constained logistic regulaization method
proposed in this study has demonstrated superior per-
formance in identifying important genetic variants
from both simulation study and the Nurese’s Health
Study, a case–control study of type 2 diabetes with
high dimensional SNP measurements. The network
term in the regularized loss function accomodates the
LD widely present among SNPs, which guarantees the
advantage of the developed one over the competing
alternative methods.
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