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Abstract

Background: Genotyping-by-sequencing (GBS) has emerged as a powerful and cost-effective approach for discovering
and genotyping single-nucleotide polymorphisms. The GBS technique was largely used in crop species where its low
sequence coverage is not a drawback for calling genotypes because inbred lines are almost homozygous. In contrast,
only a few studies used the GBS technique in animal populations (with sizeable heterozygosity rates) and many of those
that have been published did not consider the quality of the genotypes produced by the bioinformatic pipelines. To
improve the sequence coverage of the fragments, an alternative GBS preparation protocol that includes selective primers
during the PCR amplification step has been recently proposed. In this study, we compared this modified protocol with
the conventional two-enzyme GBS protocol. We also described various procedures to maximize the selection of high
quality genotypes and to increase the accuracy of imputation.

Results: The in silico digestions of the bovine genome showed that the combination of PstI and MspI is more suitable for
sequencing bovine GBS libraries than the use of single digestions with PstI or ApeKI. The sequencing output of the GBS
libraries generated a total of 123,666 variants with the selective-primer approach and 272,103 variants with the conventional
approach. Validating our data with genotypes obtained from mass spectrometry and Illumina’s bovine SNP50 array, we
found that the genotypes produced by the conventional GBS method were concordant with those produced by these
alternative genotyping methods, whereas the selective-primer method failed to call heterozygotes with confidence. Our
results indicate that high accuracy in genotype calling (>97%) can be obtained using low read-depth thresholds (3 to 5
reads) provided that markers are simultaneously filtered for genotype quality scores. We also show that factors such as the
minimum call rate and the minor allele frequency positively influence the accuracy of imputation of missing GBS data. The
highest accuracies (around 85%) of imputed GBS markers were obtained with the FIMPUTE program when GBS and SNP50
array genotypes were combined (80,190 to 100,297 markers) before imputation.
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* Correspondence: nathalie.bissonnette@canada.ca
1Research and Developent Center of Sherbrooke, Agriculture and Agri-Food
Canada, Sherbrooke, QC, Canada
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Brouard et al. BMC Genetics  (2017) 18:32 
DOI 10.1186/s12863-017-0501-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-017-0501-y&domain=pdf
http://orcid.org/0000-0003-3281-209X
mailto:nathalie.bissonnette@canada.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: We discovered that the conventional two-enzyme GBS protocol could produce a large number of
high-quality genotypes provided that appropriate filtration criteria were used. In contrast, the selective-primer
approach resulted in a substantial proportion of miscalled genotypes and should be avoided for livestock genotyping
studies. Overall, our study demonstrates that carefully adjusting the different filtering parameters applied to the GBS data is
critical to maximize the selection of high quality genotypes and to increase the accuracy of imputation of missing data.
The strategies and results presented here provide a framework to maximize the output of the GBS technique in animal
populations and qualified the PstI/MspI GBS assay as a low-cost high-density genotyping platform. The conclusions
reported here regarding read-depth and genotype quality filtering could benefit many GBS applications, notably genome-
wide association studies, where there is a need to increase the density of markers genotyped across the target population
while preserving the quality of genotypes.
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Background
Genome-wide association studies (GWAS) are powerful
tools for correlating genetic variations to a wide range of
traits and diseases. The success of GWAS relies on the
availability of a large number of markers, which are
typically derived from commercial high-throughput
technologies capable of genotyping tens or hundreds of
thousands of single-nucleotide polymorphisms (SNPs).
However, the per-sample cost associated with these tech-
nologies could be prohibitive when large sets of individ-
uals are to be genotyped. To reduce the cost associated
with SNP discovery and genotyping, various protocols
targeting only a fraction of the genome using restriction
enzymes were developed [1]. Genotyping-by-sequencing
(GBS) has supplanted these methods and provides a low
cost per sample, a low requirement of genomic DNA
(100 ng), technical simplicity in the library preparation
procedure, and compatibility with DNA barcoding [2, 3].
The use of different DNA barcoded adaptors for each li-
brary allows to pool them for sequencing (Multiplexing
level up to 384). Briefly, a unique DNA barcode (4–
9 bp) is ligated to the digested fragments of each library
in order to associate the raw sequences to their corre-
sponding sample. During the PCR amplification of the
construction of libraries, the specificity of the forward
primer prevents the amplification of fragments that
would contain more than a single barcode [1]. Initially
developed with one enzyme for crop plants [2], GBS has
been successfully extended to a two-enzyme system by
combining a ‘rare cutter’ and a ‘common cutter’ in order
to achieve uniform reduction of the complexity of the
genome [4]. Most GBS approaches also use methylation-
sensitive restriction endonucleases to reduce the por-
tions of repetitive DNA among the digested fragments,
an advantage when working with large and complex ge-
nomes. Recently, the GBS technique was used in cattle
by De Donato et al. [5] and Ibeagha-Awemu et al. [6] to
identify a total of 63,697 SNPs (47 cattle animals) and
515,787 SNPs (1276 cows), respectively. Interestingly,

variants detected through sequencing methods such as
GBS are less prone to ascertainment bias in comparison
with variants obtained from array-based genotyping plat-
forms. For example, a large portion of the markers
present on the bovine SNP50 BeadChip (Illumina) were
discovered by the alignment of random shotgun reads
from six breeds to the Hereford reference sequence [7]
and were found to be surprisingly underrepresented in
the markers derived from the whole-genome resequen-
cing of a Holstein bull [8]. Bovine SNP50 markers also
exhibit higher frequencies than random SNPs, a situ-
ation that may not facilitate the identification of com-
plex dairy cattle traits, because many of them are
suspected to rely on low-frequency (minor allele fre-
quency [MAF] = 0.5% to 5%) and rare (MAF < 0.5%)
variants [6]. Interestingly, those sequencing studies iden-
tified a large proportion of novel SNPs, suggesting that
the SNP signature of a complex trait in cattle would be
incomplete if a BeadChip array is used.
One of the notable features of GBS is the production

of large amounts of missing data owing to the presence
of variations in the restriction sites, a consequence of in-
dividual genetic divergence, differential methylation, and
technical issues resulting from the library’s complexity
or low sequence coverage [3]. Strategies that have
proved successful for dealing with missing GBS data in-
clude adjusting the level of multiplexing, changing the
choice of restriction enzyme(s), and imputing genotypes
[3]. Recently, Sonah et al. [9] proposed an alternative ap-
proach to achieve a greater reduction in complexity and
thereby reduce the amount of missing data produced by
the GBS method. Working with eight diverse soybean
lines, those authors described a modified GBS library
preparation protocol that takes advantage of selective
amplification during the PCR amplification step to in-
crease the number of SNPs called and their associated
sequence coverage. Exploring the extent to which miss-
ing data can be tolerated in GBS datasets, the same
group also showed that SNPs can be called with high
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accuracy when up to 80% missing data is tolerated,
given that imputation is used to fill in the missing ge-
notypes [10].
In the present study, mass spectrometry and bovine

SNP50 BeadChip arrays were used to validate bovine
GBS genotypes obtained from two methods in library
preparation: a typical two-enzyme method with conven-
tional primers [4] and a method with selective-primer
[9]. We discovered that the latter approach resulted in a
substantial proportion of miscalled genotypes and
should be avoided for livestock genotyping studies. In
contrast, we found that the conventional-primer method
could produce a large number of high-quality genotypes
provided that appropriate filtration criteria were used.
We also assessed the performance of two programs
(BEAGLE and FIMPUTE) for imputing the missing ge-
notypes and evaluating the relevance of combining
SNP50 arrays and GBS datasets. We demonstrated here
that a careful analysis of GBS data can produce, at rela-
tively low cost, accurate genotypes at tens of thousands
of loci in an animal population. The strategies developed
in this study may facilitate the use of GBS to obtain
genotype variants that are largely independent from
those present on SNP arrays. In future studies, these
strategies could be used at a larger scale to identify gen-
omic regions associated with susceptibility or resistance
to complex diseases such as bovine paratuberculosis.

Methods
Animals
A total of 48 dairy cows from various farms in the prov-
ince of Quebec, Canada, were selected on the basis of
the each animal’s infection status for bovine paratuber-
culosis. Faeces and blood samples were collected during
two periods at least 6 months apart. For the healthy ani-
mals, both tests were consistently negative over a two-
year period, including the one-year period covered by
the study. Diagnosis was established as previously
described [11].

DNA extraction, GBS library preparation and sequencing
Genomic DNA was extracted from blood samples using
the Wizard Genomic DNA Purification Kit (Promega,
Madison, WI) according to the manufacturer’s instruc-
tions. The DNA was quantified by spectrophotometry
using a NanoDrop ND-1000 spectrophotometer (Thermo
Scientific, Wilmington, DE). Libraries were prepared by
the Plateforme d’Analyses Génomiques at the Institut de
biologie intégrative et des systèmes (Université Laval,
Quebec City, QC, Canada). Briefly, two sets of 48-plex
GBS libraries were prepared as described in Poland et al.
[4] by digesting the genomic DNA with PstI and MspI and
ligating each library to its respective barcoded adapters
with a PstI overhang. To determine whether complexity

reduction could be achieved by selective amplification, a
set of 48 samples (24 MAP-infected cows and 24 healthy
cows) was amplified by selective primers, as described in
Sonah et al. [9], and the same samples were amplified
using generic primers. Single-end sequencing (100-bp)
was performed on an Illumina HiSeq 2000 by the McGill
University and Génome Québec Innovation Centre
(Montreal, QC, Canada; http://gqinnovationcenter.com/
index.aspx).

Sequence analysis, alignments and SNP calling
DNA sequence data (100-nt fastq files) were proc-
essed using the IGST-GBS pipeline as described in
Sonah et al. [9]. Briefly, reads were associated with
individual samples by the recognition of the exact se-
quence of the barcode (4 to 8 bp) followed by
TGCAG, the nucleotides that remain after digestions
with PstI (FASTX-Toolkit). The sequences were after-
wards trimmed to 64 bp and aligned to the reference
genome using the Burrows-Wheeler Aligner [12]. The
variants were called with PLATYPUS [13] if they had
a minimum read depth of 2 and a minimum genotype
quality score of 5.

Analysis of fragments digested by restriction enzymes
In silico digestion
In silico digestion of the bovine chromosome was
performed with the Bos taurus reference sequence
(UMD_3.1.1/BosTau8). The location of fragments pro-
duced for each digestion was computed using the pro-
gram RESTRICT from the EMBOSS version 6.5.7.0
package [14]. Digested fragments for each size range
were summed, and their proportion relative to the total
number of fragments was reported on the histogram.
Relative frequencies of fragment sizes were evaluated by
using bin widths of 100 bp.
Estimation of the number of fragments produced

through the PstI/MspI GBS assay. To estimate the num-
ber of fragments produced through the GBS experiment
and to compare them with the in silico predictions, the
48 alignments files derived from the conventional
method of library preparation were analyzed using GEN-
OMECOV included in the BEDtools. Using the output
files from this command and a custom Perl script we
computed the sum of predicted fragments for all chro-
mosomes by assuming that all fragments are separated
by more or less long spaces where the coverage is 0.
We next estimated the average number of PstI/MspI
fragments per sample and calculated the standard
deviations.

Bovine SNP50 genotyping and analysis
Individuals sequenced in our GBS assays were also geno-
typed with the Illumina BovineSNP50 BeadChip array
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(Zoetis, Kalamazoo, MI). Starting from the Illumina ‘A/
B’ allele genotypes, a VCF file containing 67,740 SNPs
was produced using a custom Perl script. This script re-
moved duplicate SNPs, SNPs that were not consistent
with the nomenclature of ‘Allele A’ and ‘Allele B’ accord-
ing to the Illumina genotyping system, and SNPs that
did not align perfectly (BLASTN) to the reference
sequences of the bovine autosomes and mitochondrial
genome (UMD_3.1.1/BosTau8) or the X chromosome
(Btau4.6.1). After monomorphic SNPs had been
removed, a SNP50 dataset containing 50,539 informative
SNPs was produced and used for assessing the accuracy
of GBS genotypes by direct comparison of the common
genotypes.

Assessment of the accuracy of GBS genotypes produced
by the two methods of library preparation
Prior to any filtration of GBS data, common variants
shared between the GBS and the SNP50 datasets were
used to assess the accuracy of the genotypes derived
from the two library preparation methods. We assume
that the SNP50 array reported true genotypes. The ac-
curacy of the GBS genotypes was defined as: (the num-
ber of identical genotypes between GBS and SNP50/total
number of genotypes) * 100. For example, to evaluate
the accuracy of the genotypes produced by the
conventional-primer approach, the GBS genotypes from
1604 markers from a total of 48 animals were compared
directly to their corresponding genotypes in the SNP50
dataset. Missing genotypes were excluded from the com-
putation performed using a custom Perl script. The ac-
curacy of GBS genotypes produced by the two methods
was also tested by mass spectrometry. A total of 13
SNPs were genotyped using the Sequenom MassARRAY
iPLEX Platform at the McGill University and Génome
Québec Innovation Centre. Direct comparisons of the
corresponding genotypes were performed, assuming that
mass spectrometry reported true genotypes.

Variant QC filtering
First step
The VCF file containing the GBS raw variants produced
by the conventional method of library preparation was
imported in the Golden Helix SVS software (Golden
Helix, Bozeman, MT). To estimate the accuracy of the
GBS genotypes selected after filtering under various qual-
ity control (QC) conditions, we derived eight datasets
from the original dataset using four levels of minimum
RD values (≥3, 4, 5 or 6) with or without additional filter-
ing for genotype quality (GQ) ≥ 20 (Table 3). GQ, defined
as a conditional genotype quality is encoded as a phred
quality score and is equal to -10log10 p, where p is the
probability that the genotype call is wrong at the site
showing a variation. The accuracy of the GBS genotypes

has been estimated as described previously by using the
markers shared with the BovineSNP50 BeadChip array in
each dataset.

Second step
For a specific variant, the call rate is the ratio of individ-
uals with known genotypes over the total number of in-
dividuals. Considering all genotyped loci, the average
call rate can be view as the average proportion of sam-
ples per loci for which genotype information is available.
With the conventional GBS approach, the average call
rate of the raw variants is low, meaning that for most
variants, the actual genotypes are missing for a majority
of samples. Thus selecting variants with relatively high
call rate values would lead to the exclusion of almost all
variants from downstream analysis. For variant filtering,
the minimum call-rate is the minimum proportion of
samples with known genotypes a variant must have in
order to be retained. Starting with three datasets that
had been previously filtered for minimum read depth
and high GQ values (IDs 2, 4 and 6 in Table 3), three
low thresholds for minimum call rate (0.2, 0.3, and 0.4)
were tested to keep a substantial fraction of the raw vari-
ants generated by the IGST-GBS pipeline. Using these
thresholds a specific variant was retained if the genotype
was found in at least 10, 15, or 19 individuals, respect-
ively, out of 48. At this step, we also tested two values
for the minimum minor allele frequency (MAF), 0.02
and 0.05, and eliminated variants if they had two or
more alternative alleles.

Imputation of GBS genotypes
The presence of large proportions of missing data in
GBS datasets requires an imputation step to fill these
gaps before any association tests can be performed. To
evaluate how filtration criteria would influence imput-
ation accuracy, we derived 12 datasets from the original
catalogue of conventional-primer GBS variants (see
Table 4). We tested different parameters: i) the mini-
mum read depth, ii) the minimum minor allele fre-
quency, iii) the minimum call rate, iv) the imputation
program and v) the effect of combining GBS and SNP50
markers to obtain high marker-density conditions before
imputation. Two software packages, BEAGLE v4.0 [15]
and FIMPUTE v2.2 [16], were used for the imputation
of the missing data in the GBS datasets.
We were also interested in evaluating the impact of

high marker density on the accuracy of imputed GBS
markers. To obtain high marker-density conditions, we
firstly removed from the SNP50 dataset all markers
shared with the GBS, reducing the number of SNP50
markers from 50,539 to 49,084. Using VCFtools, 12
mixed datasets (GBS + SNP50 in Table 4) were then
produced by combining GBS markers obtained with
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different QC conditions with this unique altered SNP50
dataset. This procedure allows estimating the accuracy
of imputed GBS genotypes (and not SNP50 array geno-
types) by direct comparison of GBS genotypes shared
with those present in the unaltered SNP50 dataset. Be-
fore running the imputation programs, monomorphic
SNPs, multiple nucleotide variation as well as variants
located on chromosome X, Y, or on the mitochondrial
genome were removed using the VCFtools. In all cases,
the accuracy of imputation of missing GBS data was esti-
mated by comparing the imputed GBS genotypes with
those reported by the SNP50 array at all common loci,
assuming again that the genotypes produced by the
SNP50 array represented true genotypes.

Data deposition
Variants were deposited in the NCBI dbSNP database
under the batch ID GSB_18_48 for the conventional-
primer dataset and under the batch ID GSB_19_48 for
the selective-primer dataset.

Results
In silico restriction enzyme digestions to confirm
suitability of PstI/MspI for sequencing bovine GBS
libraries
Digestion of the 2.6-billion-bp bovine genome with a 6-
bp restriction enzyme has the potential to generate more
than 634,000 fragments, most of which are greater than
1 kbp, a size that is too large to be efficiently sequenced
by Illumina’s HiSeq systems. To reduce the number of

fragments produced and to maximise the proportion of
fragments with optimal sizes for sequencing (100 to
500 bp), the two-enzyme version of the GBS protocol
proposed by Poland et al. [4] uses a combination of a
‘medium frequency cutter’, PstI (CTGCAG), with a ‘fre-
quent cutter’, MspI (CCGG). To make sure that these
two enzymes were suitable for the bovine genome, we
performed an in silico digestion of the bovine chromo-
some (Fig. 1) and compared the predicted fragment-size
distribution with other enzymes used in recent GBS
studies. As shown in Fig. 1, ApeKI and the combination
of PstI and MspI produced the larger proportions of
fragments in the size range between 100 and 500 bp
relative to the other enzymes. Digestions of the bovine
genome with PstI/MspI generated a total of 754,306
fragments, fewer than those produced by single-enzyme
digestions with ApeKI (5.68 million), PstI (1.58 million),
or MspI (1.97 million). We therefore concluded that the
combination of PstI and MspI has the potential to sig-
nificantly reduce the complexity of the bovine genome,
because these enzymes target fewer sites than single di-
gestions with PstI, MspI or ApeKI do, a situation that
may increase the sequence coverage of the resulting
fragments.
We have also evaluated the distribution of fragments

sequenced through our PstI/MspI assay to compare
them with the in silico predictions. We found that for all
autosomes, the average numbers of fragments produced
per animal are slightly lower than those predicted in
silico (Fig. 2).

Fig. 1 In silico analysis of restriction enzyme sites in the bovine genome. The percentage was calculated based on the number of fragments obtained
with the respective digestion that fall within each range of fragment lengths over the total number of fragments obtained with the corresponding
restriction enzyme digestion. The total number of fragments obtained with the corresponding restriction enzyme is indicated in the legend box. The
number of fragments computed in the size range between 100 and 500 bp is indicated above the corresponding bar of the small histogram
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Comparison of a conventional two-enzyme GBS protocol
and a modified method with selective primers
Single-end sequencing with the conventional method of
library preparation produced a total of 191,912,978
reads, with an average of 4.0 million reads per sample
(Table 1). The GBS method with selective primers gener-
ated a total of 163,583,652 reads, with an average of 3.4
million reads per sample (Table 1). The number of raw
sequence reads per individual ranged from 1.4 million to
9.1 million with the conventional method and from 1.2
million to 7.6 million with selective primers (Fig. 3a). Of
the 48 samples, two individuals failed the bovine SNP50
genotyping assay and were removed from further com-
parison analysis.
A total of 272,103 variants were detected with the con-

ventional GBS approach, whereas 123,666 variants were
found with the selective-primer approach (Table 1). It
should be noted that the yield of the sequenced lanes
(192 million versus 186 million) cannot explain this dif-
ference. The lower number of variants associated with
the latter method was largely expected, since it was de-
signed to select a subset of the digested fragments in
order to increase the sequence coverage associated with

genotypes. As expected, we found a high proportion of
individuals with missing genotypes in both datasets. In
the panel of variants derived from the conventional-
primer approach, the call rate per sample ranged from
0.140 to 0.501, for an average value of 0.352 (Table 1,
Fig. 3b). Lower call rates were recorded with the
selective-primer approach, with values ranging from
0.0784 to 0.260.
By looking at the raw data generated by the pipeline,

we found that a large proportion of the variants were
supported by low read-depth values (RD < 10). We fur-
ther examined the distribution of all variant calls accord-
ing to their associated read-depth coverage in both
methods (Fig. 4). At low RD values (<10), the
conventional-primer method produced more variants
calls than the selective-primer method did, in contrast
to the situation observed at high read-depth values,
where more calls were generated by the selective-primer
method. This result confirms that the latter library prep-
aration method is very effective for increasing the read-
depth coverage at the expense of the number of sites
that could be genotyped. Overall, the selective-primer
method produced fewer genotype calls than the
conventional-primer method did, and a large proportion
of those genotypes had a much higher read depth.

Assessing the accuracy of GBS genotypes
To assess the accuracy of the genotypes reported by the
two methods, 13 markers under investigation for their
association with Johne’s disease (not shown) were geno-
typed using the Sequenom MassARRAY iPLEX Plat-
form. As shown in Table 2, all GBS genotypes derived
from the conventional-primer method were concordant

l l

Fig. 2 Comparison of the average number of sequenced PstI/MspI fragments with the corresponding in silico predictions. The average numbers
of fragments sequenced per animal as well as the standard deviations were deduced from the alignments files

Table 1 Descriptive features of GBS data generated with two
methods of library construction

Total Library construction

Conventional primers Selective primers

Raw reads 191,912,978 163,583,652

Mapped reads 186,122,054 159,145,610

GBS variants 272,103 123,666

Average call rate (n = 46) 0.352 [0.140–0.501] 0.159 [0.078–0.260]

Common with SNP50 1604 756
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with genotypes reported by the MassARRAY technique,
suggesting that the conventional-primer protocol pro-
duced genotypes with high accuracy. In contrast, a
substantial portion of the selective-primer genotypes did
not agree with those reported by the Sequenom platform
(Table 2). In all but one discordant case, true heterozy-
gotes were miscalled as homozygotes by the selective-
primer approach.
We also examined the variants shared between the

SNP50 array and the two library preparation approaches.
The 50,539 unique SNPs retained in the SNP50 dataset
were largely independent from those obtained with the
GBS approach, with only 1604 markers common to the
conventional-primer and SNP50 datasets and 756
markers common to the selective-primer and SNP50
dataset (Table 1). Although small, the marker overlap
between the GBS and SNP50 array datasets allowed us
to compare directly the accuracy of the genotypes pro-
duced by the two methods. In the absence of any filtra-
tion step, we found that the accuracy of the genotypes
produced by the selective-primer approach is around
69.7% whereas that of the genotypes derived from the
conventional approach reach 89.0%. This result confirmed

Fig. 3 Distribution of the number of reads and variant call rates. a Number of mapped reads assigned to individual samples after demultiplexing of
two 48 plex sequencing lanes. One group of libraries was prepared with conventional primers, and the other with selective primers. b Call rate of the
variants in both methods of library preparation. Variants detected have a minimum read depth of 2 and a genotype quality score of 5 or greater

Fig. 4 Distribution of read-depth coverage in genotype calls for
both methods of library preparation. The conventional-primer method
outperformed the method with selective primers on the basis of the
number of genotype calls reported. The selective-primer method
produced more calls with read-depth values greater than 10, whereas
the conventional-primer method produced more genotypes with 10
reads or fewer
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our initial finding that a significant proportion of the GBS
genotypes produced by the latter approach were miscalled
by this method.
Working henceforth with GBS genotypes produced by

the conventional-primer approach, we were initially in-
terested in determining the minimum number of reads
required to call a genotype with confidence. We also ex-
amined how filtering simultaneously for GQ could affect
the accuracy of genotypes. As shown in Fig. 5, we found
that the minimum number of reads required to call a
genotype had a great impact on the number of variants
that passed this first filtering step. Again, this is
explained by the above-mentioned distribution of read--
depth values associated with genotypes (Fig. 4).

Interestingly, when datasets were not filtered according
to GQ, the accuracy substantially decreased, but this gap
was reduced when the minimum read-depth threshold
was increased (Fig. 5). For example, genotypes in dataset
1 (Table 3) had an overall estimated accuracy of only
92.8% in comparison with those in dataset 7 (97.7%). To
explain this result, one must realise that many variants
included in this dataset were called using only three
reads and that the probability of miscalling a heterozy-
gote using three reads is high, at 1 in 4. In contrast, sim-
ultaneous filtering for GQ consistently increases the
genotype accuracy, because genotype calls having a GQ
score greater than 20 (encoded as a Phred score) have a
greater than 99% probability of being real.

Table 2 GBS calls relative to Sequenom MassARRAY genotypesa

Conventional-primer method

Concordant Discordant Concordance
(%)b

Chr Position Ref Alt MMb Mmb mmb MM Mm mm

5 124968560 C T 0 11 5 0 0 0

6 120556623 T C 1 8 0 0 0 0

7 25377202 A G 0 2 1 0 0 0

12 81073590 G T 5 4 0 0 0 0

17 4536929 G A 2 8 0 0 0 0

18 11257808 A G 2 8 0 0 0 0

18 63490716 C T 6 17 0 0 0 0

23 18485367 C G 2 8 0 0 0 0

28 1121069 G T 5 5 0 0 0 0

Total 23 71 6 0 0 0 100.0

Selective-primer method

5 124968560 C T 3 13 16 0 9 0

6 120556623 T C 10 22 12 0 2 0

7 25377202 A G 5 17 19 0 1 1

11 6123151 T C 18 13 3 0 8 0

12 81073590 G T 19 11 3 0 7 0

17 4536929 G A 11 11 12 0 9 0

18 11257808 A G 20 16 6 0 3 0

18 63490716 C T 17 13 4 0 7 0

23 18485367 C G 18 13 2 0 4 0

24 26394985 G T 18 13 7 0 5 0

24 26395035 C T 7 14 18 0 6 0

28 1121069 G T 24 9 0 0 6 0

X 49928152 C T 34 8 0 0 0 0

Total 204 173 102 0 68 0 87.6
aThe 13 single-nucleotide polymorphisms (SNPs) examined were initially detected in a selective-primer dataset. Only 9 of these 13 SNPs could be retrieved in the
corresponding conventional-primer dataset. Variants in these datasets were kept if they qualified based on a read depth ≥ 5, a genotype quality score ≥ 20, no
more than one alternative allele, a call rate > 0.2, and a minor allele frequency ≥ 0.025. Chr: chromosome; Ref: reference allele; Alt: alternate allele; MM: homozygous for
the reference allele; Mm: heterozygous; mm: homozygous for the alternate allele
bThe reliability of SNP prediction was based on the reference calls predicted using the Sequenom MassARRAY technology. Discordant SNP reports call conflict
by GBS
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Importance of adjusting the minimum call-rate threshold
in the second step of QC filtering
As shown in Fig. 6, the number of remaining markers after
the second QC step decreases linearly with an increase in
the minimum call rate. For example, when using a mini-
mum of three reads to call a genotype, the number of
markers retained decreases from 56,556 markers at a call
rate of 0.2 or greater to 21,561 markers at a call rate of 0.4
or greater (Table 4). As expected, we found that decreasing
the minimum MAF threshold from 0.05 to 0.02 allows
slightly more variants to be retained. The results presented
in Fig. 6 clearly highlight the importance of considering a
less-stringent minimum call rate to make sure that enough
variants are retained for downstream analysis.

Imputation accuracy of missing data
Two programs, BEAGLE and FIMPUTE, were used for
the imputation of the missing data. BEAGLE is an

established genetic analysis software program that uses
hidden Markov models, exploits linkage disequilibrium
(LD) between markers (population imputation method)
and assumes that all animals are unrelated [17]. On the
other hand, FIMPUTE is a deterministic software de-
signed to handle large-scale genotype imputation in live-
stock [16]. We noticed that both programs performed
equally well when imputing datasets containing GBS
markers only, whereas FIMPUTE clearly outperformed
BEAGLE when SNP50 and GBS markers were combined
(Fig. 7a). In addition, the most striking result presented
in Fig. 7 was the improved imputation accuracy of the
missing GBS genotypes observed in datasets combining
GBS and SNP50 genotypes. The imputation accuracy
also consistently increased when higher minimum call-
rate thresholds were applied, with the highest accuracies
obtained with a call rate of 0.4 or greater (Fig. 7).

Fig. 5 Estimated accuracies of GBS genotypes after the first quality
control step. Accuracy was estimated using GBS variants that were also
found on the SNP50 array. The GBS genotypes were filtered according
to their associated read-depth (RD) coverage without consideration of
the genotype quality (GQ) or using a GQ score threshold of 20. At each
shared locus, the concordance of the GBS and the SNP50 genotypes
was assessed, assuming that those reported by the SNP50 array
represented true genotypes

Table 3 Effect of read-depth and genotype quality (GQ) thresholds on the accuracy of GBS genotype calls

Dataset ID Filtering criteria (first step) Number of variants Markers shared with SNP50 Number of calls examined Estimated accuracy (%)a

1 ≥3 reads 182,334 1150 20,845 92.8

2 ≥3 reads and GQ > 20 154,991 1006 11,029 97.4

3 ≥4 reads 146,936 956 14,552 95.3

4 ≥4 reads and GQ > 20 130,813 865 8873 98.3

5 ≥5 reads 122,234 825 9818 97.0

6 ≥5 reads and GQ > 20 114,588 778 6952 98.8

7 ≥6 reads 105,085 723 6478 97.7

8 ≥6 reads and GQ > 20 101,552 689 5147 99.0
aThe reliability of GBS genotypes was based on the reference calls generated using the SNP50 BeadChip. Estimation of the concordant SNPs is reported

Fig. 6 Effect of different quality control parameters on the number
of GBS markers selected for downstream analysis. The markers identified
by GBS and used in the 18 datasets had a genotype quality score≥ 20
and no more than one alternative allele. More details on the datasets
can be found in Table 3. minMAF: minimum minor allele frequency; RD:
read depth
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However, GBS datasets filtered with this threshold con-
tain many fewer markers than datasets filtered with
lower call rate thresholds do.
We next asked how changes in the threshold for the

minimum read depth associated with genotypes could
affect the accuracy of imputation. Our results indicate
that the minimum read-depth threshold hardly impacts
the estimated accuracy of the imputed genotypes
(Fig. 7b). This finding is not surprising, given that we
already showed that the estimated accuracies of geno-
types increased only moderately when the minimum
read-depth threshold was raised from three reads to four
or five, provided that genotypes were also filtered with
GQ scores of 20 or greater (Fig. 5). In light of these

observations (Fig. 7b), one can conclude that the gains
in genotype accuracy of using four or five reads relative
to only three reads are marginal and do not offset the
cost of losing thousands of markers.
The effect of lowering the threshold for the

minimum MAF on the estimated accuracy of im-
puted genotypes is presented in Fig. 7c. We found
that datasets consisting of variants with a MAF
greater than 0.02 were slightly larger and better im-
puted than their corresponding datasets with a MAF
greater than 0.05 were. This observation is surpris-
ing, given that rare alleles were generally found to
be harder to impute than their more widespread
counterparts [16, 18].

Table 4 Description of datasets used for testing different parameters on the accuracy of imputation of GBS missing data

Dataset ID Description Min. read
depth

MinMAFa Min. call
rate

Number of
variants

Variants shared
with SNP50

Imputation
program

Estimated
accuracy (%)

9 GBS 3 0.05 0.2 53,556 431 FImpute 71.1

10 GBS + SNP50 3 0.05 0.2 98,398 431 FImpute 84.8

11 GBS 3 0.05 0.3 40,208 334 FImpute 74.2

12 GBS + SNP50 3 0.05 0.3 88,573 334 FImpute 89.1

13 GBS 3 0.05 0.4 21,561 156 FImpute 77.5

14 GBS + SNP50 3 0.05 0.4 70,250 156 FImpute 91.9

15 GBS 4 0.02 0.2 55,727 395 FImpute 73.3

16 GBS + SNP50 4 0.02 0.2 100,297 395 FImpute 86.4

17 GBS 4 0.05 0.2 45,447 369 Beagle 70.9

GBS 4 0.05 0.2 45,447 369 FImpute 71.2

18 GBS + SNP50 4 0.05 0.2 90.234 369 Beagle 78.5

GBS + SNP50 4 0.05 0.2 90.234 369 FImpute 86.1

19 GBS 4 0.02 0.3 40,855 278 FImpute 75.9

20 GBS + SNP50 4 0.02 0.3 89,196 278 FImpute 90.3

21 GBS 4 0.05 0.3 31,662 254 Beagle 74.0

GBS 4 0.05 0.3 31,662 254 FImpute 74.3

22 GBS + SNP50 4 0.05 0.3 80,190 254 Beagle 83.8

GBS + SNP50 4 0.05 0.3 80,190 254 FImpute 89.3

23 GBS 4 0.02 0.4 22,331 98 FImpute 83.3

24 GBS + SNP50 4 0.02 0.4 70,983 98 FImpute 93.4

25 GBS 4 0.05 0.4 14,909 82 Beagle 81.2

GBS 4 0.05 0.4 14,909 82 FImpute 80.8

26 GBS + SNP50 4 0.05 0.4 63,706 82 Beagle 89.8

GBS + SNP50 4 0.05 0.4 63,706 82 FImpute 93.4

27 GBS 5 0.05 0.2 36,913 299 FImpute 70.0

28 GBS + SNP50 5 0.05 0.2 81,454 299 FImpute 85.4

29 GBS 5 0.05 0.3 22,685 166 FImpute 74.8

30 GBS + SNP50 5 0.05 0.3 71,360 166 FImpute 89.5

31 GBS 5 0.05 0.4 8818 42 FImpute 79.5

32 GBS + SNP50 5 0.05 0.4 57,719 42 FImpute 92.2
aMinMAF: minimum minor allele frequency
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Discussion
GBS for SNP discovery and genotyping in a cattle
population
In the present study, we developed strategies to deal
with two major issues of the GBS technique when used
as a genotyping assay: its low-coverage sequencing and
the presence of high levels of missing data. To our
knowledge, this study is the first to examine how the
read-depth coverage and other QC parameters affect the
accuracies of the genotypes produced by this method.
We used GBS as a technique to genotype markers in a
bovine population with relatively high heterozygosity
rates, in contrast to the situation in many GBS crop
studies, where selection resulted in decreased heterozy-
gosity rates. In doubled haploids, genotypes can be
called accurately with one or two reads, because almost
all genotypes of an individual are homozygotes for the
major or minor alleles. In contrast, using GBS to geno-
type animal populations poses a major challenge, be-
cause a minimum number of reads are needed to call a
heterozygote with confidence.
From a SNP discovery perspective, our report allowed

the detection of 272,103 variants using the conventional-
primer method, more than the 63,697 SNPs previously
identified in a similar GBS study in cattle [5]. Given that
the two studies used a similar sample size and were per-
formed with the same multiplexing level, we believe that
the increased number of variants detected in our study
is the result of our decision to use a two-enzyme proto-
col rather than a single digestion with PstI. In both stud-
ies, sequencing reactions are anchored on the PstI site.
However, in our study, the addition of the ‘common cut-
ter’ MspI increased the number of fragments available
for sequencing by cutting the large PstI-PstI fragments
that otherwise could not have been sequenced. A two-
enzyme protocol is therefore an elegant strategy to im-
prove the number of sampled sites. The distribution of
the sequenced fragments compared with the in silico
PstI/MspI prediction (Fig. 2) suggests a great perform-
ance of the conventional method of library preparation.
The reduced number of sequenced fragments relative to
the in silico prediction is likely explained by a significant
proportion of the PstI or MspI restriction sites that are
potentially methylated in the genome. Nevertheless, we

Fig. 7 Effect of different parameters on the accuracy of imputation
of GBS markers and the number of variants retained. The accuracies
of the missing GBS genotypes were estimated by evaluating the
concordance of the imputed GBS genotypes with the SNP50 genotypes.
All panels illustrate the effect of the minimum call rate as well as the
combination of GBS markers (genotype quality score≥ 20) and SNP50
markers on the estimated accuracy of GBS-imputed markers. The
parameters examined were a the imputation program, b the thresholds
for the minimum read depth, and c the minMAF
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expect that a larger case–control cohort should generate
more SNPs because it will capture a larger proportion of
the genetic variability present in the population. For ex-
ample, a recent study using the PstI GBS protocol for
SNP identification reported 515,787 SNPs among 1246
Canadian Holstein cows [6]. Consequently, by using
such a large cohort of dairy cattle for the association
with Johne’s disease, we expect to identify a much larger
number of SNPs. Because many genotypes in our study
are covered by only 1 or 2 reads (Fig. 4), it is clear that a
slight decrease in the multiplexing level could also in-
crease the number of variants retained after the QC
filtering steps.
The catalogue of variants detected by De Donato et al.

[5] displayed a much higher call rate (88.1%) than what
we observed in our variant dataset (35%; Table 1, Fig. 3b).
Similar high call rates (>85%) were also reported in a
second study using GBS to genotype dairy cows [6].
Although the nature of the informatics pipelines and the
sequencing output could be evoked to explain these dif-
ferences, it is clear that most of them are attributable to
the fact that these studies reported genotypes supported
by only one read. In contrast, we reported genotypes
when two or more reads were present at the same locus
through the IGST-GBS pipeline, with the consequence
that more missing data were included in our catalogue
of raw variants (Fig. 3b).
Our decision to use a minimum of three reads was

based on the consideration that minimum coverage
should be used to call a heterozygous animal. There is
no way that a heterozygous individual could be ad-
equately called with one read. Our pipeline includes an
efficient SNP calling tool (PLATYPUS) that retains vari-
ants supported by at least two reads per locus. We con-
sidered two reads to be inadequate, with only a 50%
chance of accurately calling a heterozygous animal. Ad-
equate coverage of a heterozygote requires that both
chromosomes of a diploid individual have a reasonable
chance of being sequenced at a specific site, and such
odds are generally not possible when markers are de-
rived from low-coverage sequencing techniques (<5X
per site per individual) [19]. Nevertheless, using our QC
parameters, which included a GQ score of 20 or greater
and a read depth of 3 or greater, we selected variants
that had more than 97% accuracy (Fig. 5). Missing data
for these highly qualified markers were then imputed
with an estimated accuracy greater than 85% (Fig. 7). In
light of these observations, one can conclude that the
gains in genotype accuracy of using four or five reads
relative to only three reads are marginal and do not off-
set the cost of losing thousands of markers (Fig. 6). We
are confident that the information provided by geno-
types imputed with such accuracies could be useful for
detecting variants associated with Johne’s disease. For

example, Ibeagha-Awemu et al. [6] retained GBS
markers imputed with an accuracy greater than 50% in
their GWAS that identified novel candidate genes influ-
encing cow milk traits.
De Donato et al. [5] removed from their analysis SNPs

present in less than 70% of the population as well as in-
dividuals with low read numbers. We choose to not per-
form such sample QC filtering, but it is clear from the
distributions of reads and call rates presented in Fig. 3
that removing individuals with low read numbers could
be beneficial in terms of the number of variants retained
after filtering for call rate. Such sequencing bias between
samples was observed in other GBS studies and is
thought to originate mainly from variations in DNA
quality between samples [5, 20].
To preserve the low cost per sample that the GBS

method offers, we examined how QC criteria combined
with different parameters of filtration impact genotype
accuracy and the number of variants retained. We found
that high number of accurate genotypes could be
selected using low values (3 to 5) for the minimum read-
depth thresholds, provided that genotypes are simultan-
eously filtered according to their GQ scores. We also
tested a modified GBS approach that uses selective
primers for amplifying a smaller fraction of the DNA cut
with the restriction enzymes. We found that a sizeable
proportion of true heterozygote genotypes were mis-
called by this method. Interestingly, at most of the loci
examined, we observed that true heterozygotes were
called correctly in certain individuals and miscalled as
homozygotes for the major or minor alleles in other in-
dividuals (data not shown), making it difficult to pin-
point the source of the problem that occurred in library
preparation. Nevertheless, we hypothesise that the
addition of the two nucleotides at the end of the 3′
primers may cause problems in the annealing step in
some circumstances and could prevent the adequate
amplification of one allele.

Accuracy of imputation of missing data
Given the preponderance of missing data in GBS data-
sets, testing the accuracy of imputation of missing data
is of utmost importance. We used shared variants be-
tween GBS and SNP50 datasets to assess the accuracy of
imputed GBS genotypes under different conditions.
Using two imputation software programs, we found that
FIMPUTE gave consistently higher imputation accur-
acies than BEAGLE did when enhanced datasets (GBS +
BovineSNP50) were considered. FIMPUTE is not only
more accurate than BEAGLE is in cattle datasets but
also requires considerably less computer resources, an
advantage when working with large population sizes. We
chose to not use the pedigree information in our imput-
ation analyses because of the limited number of samples
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included in this study. With a larger cohort, it would be
interesting to evaluate whether this information benefits
the quality of imputation. A recent study in Bos indicus
dairy cattle showed that imputation scenarios using
pedigree information and FIMPUTE resulted in similar
or slightly lower accuracies in comparison to scenarios
in which pedigree information was not used [18]. In our
study, the FIMPUTE-estimated accuracy of imputation
of GBS data ranged from 84.8% to 93.4% for combined
datasets, similar to the accuracy of 93% to 95% observed
in soybean datasets that tolerate up to 80% missing data
[10]. The slightly higher imputation accuracy observed
in soybean lines was likely due to the fact that highly
homozygous lines with a residual percentage of hetero-
zygosity around 3% were used (D. Torkamaneh, personal
communication), a situation that may facilitate the task
of imputation programs, because we assume that most
imputation errors imply heterozygote genotypes. Con-
versely, the high heterozygosis rate observed in the Hol-
stein population (34.2% in our study) could make the
task of accurately imputing genotypes harder.
Our data indicate that combining markers from the

SNP50 array dataset and the GBS dataset increased the
accuracy of imputation of missing GBS genotypes. This
finding is supported by earlier reports that the accuracy
of imputation is dependent on the density of markers
[18, 21, 22]. Contrary to the aforementioned observa-
tions in soybean [10], we did not find higher imputation
accuracies in datasets containing a larger proportion of
missing data (up to 80%). Rather, our results indicate
that benefits for the accuracy of imputation of GBS ge-
notypes result from increases in the minimum call rate
(Fig. 7). Based on this finding, we expect that in future
studies, decreasing the level of multiplexing or removing
individuals with low call rates will positively affect the
accuracy of imputation. According to Torkamaneh and
Belzile [10], increasing the portion of missing data toler-
ated in GBS datasets also increased the imputation ac-
curacy of missing data, because additional markers
helped better capture the haplotype diversity present in
the population. The lower imputation accuracies ob-
served in our datasets with more missing data (those
with the lower minimum call rates) could possibly be ex-
plained by the size of the cattle haplotypes, which are
much shorter than their counterparts in the soybean
genome. Previous reports in cattle populations have
shown that the decline in LD as a function of distance is
rapid, with average LD (r2) dropping below 0.2 at dis-
tances of 50 kb [23] and below 0.1 at 100 kb [24]. We
can hypothesise that most markers added by lowering
the minimum call rate will have low LD values and may
help the imputation of flanking markers only a little.
The impact on the overall estimated accuracy could be
negative, because these markers, which contain a higher

proportion of missing data, may be harder to impute ac-
curately. However, we cannot rule out that other factors,
notably the marked differences in the heterozygosity
rate, may have played a role in these contrasting results.

Conclusions
The results presented here are promising in many re-
spects: the conventional two-enzyme GBS protocol was
proved to be useful for producing accurate genotypes at
a low cost per sample. Using low thresholds for call rate
and read-depth coverage, combined with simultaneous
filtering for GQ values, we were able to select 53,556
GBS markers from only 48 animals without sacrificing
the quality of the genotypes. In addition, the accuracy of
imputation of missing data was proved to be highly ac-
curate in spite of the limited number of samples in-
cluded in our analysis. In our future work, the GBS
technique detailed here will be used to genotype a larger
cohort of animals (>1000 individuals) with different
MAP infection statuses. To maintain a low cost per sam-
ple, it is likely that the GBS data obtained will be used to
impute the markers present on the SNP50 array. Using
complementary datasets and the strategies detailed here,
we are confident that we could pilot an original GWAS
with an unrivalled number of markers in comparison
with the most recent association studies that have ex-
plored susceptibility to MAP infection in cattle [22]. In
our opinion, the proposed variant QC filtering and valid-
ation performed in this study qualified the PstI/MspI
GBS assay as a low-cost high-density genotyping plat-
form that presents many advantages over the array-
based genotyping platforms. Our results could therefore
have practical implications in the field of applied cattle
breeding, notably in paving the way to the development
of Genomic selection models using GBS markers. From
a broader perspective, the conclusions reported here re-
garding RD and GQ filtering could benefit many GBS
applications, notably GWAS, but also QTL mapping,
genomic selection, phylogeography or population gen-
omics. In livestock, there is a need to increase the dens-
ity of markers genotyped across the target population
while preserving the quality of genotypes. However, one
must keep in mind that low-coverage genotyping
methods are realistic only in species with an available
reference genome and for which there is a possibility to
impute missing genotypes using a reference panel.
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