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Abstract

Background: Piglet splay leg syndrome (PSL) is one of the most frequent genetic defects, and can cause
considerable economic loss in pig production. The present understanding of etiology and pathogenesis of PSL is
poor. The current study focused on identifying loci associated with PSL through a genome-wide association study
(GWAS) performed with the lllumina Porcine60 SNP Beadchip v2.0. The study was a case/control design with four
pig populations (Duroc, Landrace, Yorkshire and one crossbred of Landrace x Yorkshire).

Result: After quality control of the genotyping data, 185 animals (73 cases, 112 controls) and 43,495 SNPs were

retained for further analysis. Principal components (PCs) identified from the genomic kinship matrix were included
in the statistical model for correcting the effect of population structure. Seven chromosome-wide significant SNPs

were identified on Sus scrofa chromosome 1 (SSC1), SSC2 (2 SNPs), SSC7, SSC15 (2 SNPs) and SSC16 after strict
Bonferroni correction. Four genes (HOMERT and JMY on SSC2, [TGAT on SSC16, and RAB32 on SSC1) related to
muscle development, glycogen metabolism and mitochondrial dynamics were identified as potential candidate

genes for PSL.

Conclusions: We identified seven chromosome-wide significant SNPs associated with PSL and four potential
candidate genes for PSL. To our knowledge, this is the first pilot study aiming to identify the loci associated with
PSL using GWAS. Further investigations and validations for those findings are encouraged.
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Background

Piglet splay leg (PSL) syndrome is one of the most fre-
quent genetic defects in commercial pig production [1].
It is characterized by impaired ability to stand and walk
after birth [2]. The hind legs of PSL are splayed sideways
and in severe cases the forelegs were also affected [3].
PSL is regarded as a considerable source of economic
losses in pig production, due to the fact that the affected
piglets unable to walk freely are often crushed by the
sow or die from starvation, which could account for
about 50% of the total loss among affected piglets [4].
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Generally, lean type breeds are frequently affected and
the incidence in male piglets is higher than that in fe-
males [5-7]. The distribution of muscle fibers in PSL
was found to be different from normal animals. A spe-
cific distribution pattern of smaller fibre size and higher
fibre density in the semitendinosus, longissimus dorsi
and gastrocnemius muscles was identified [4], and long-
issimus dorsi was also found to be the most frequently
and evidently affected muscle [8].

Etiology and pathogenesis of PSL is complex, and pre-
disposing factors were thought to include genetic and
environmental factors, such as nutrition, management,
pharmacological administration, and mycotoxins [4].
Porcine reproductive and respiratory syndrome virus
(PRRSV) could increase the number of stillborn, weak,
and light weight as well as splay-legged piglets [9].
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Histomorphological investigations described PSL as
myofibrillar hypoplasia, however, which was not exclu-
sive to PSL as this condition was also found in clinically
normal piglets [10]. In addition, ultrastructural analysis
of PSL muscles clearly demonstrated an increased accu-
mulation of glycogen compared with the muscles of nor-
mal piglets [11]. Besides the histological studies, the
expression of the atrophy marker FBXO32 highly in-
creased in PSL muscles (semitendinosus, longissimus
dorsi, and gastrocnemius muscles) [4]. However, this ex-
pression result for MAFbx (alias for FBX0O32) was not
fully confirmed in later research [12]. Maak et al. [13]
compared genome wide gene expression of the hind leg
muscles (M.adductores, M.gracilis, M.sartorius) from
affected piglets and their healthy littermates using
GeneChip® Porcine Genome Array. However no signifi-
cant differences were found using a standard paired t-
test, only four genes (SQSTMI, SSRPI, DDIT4, MAF)
with significant (Wilcoxon, p < 0.05) differential expres-
sion levels in at least two muscles were found after using
a sum rank test and suggested further investigation. In
their following study [14, 15], another two differentially
expressed gene ITGAS5, ZDHHCY9 were also excluded as
candidate genes for PSL.

Despite the fact that PSL is a source of considerable
economic loss in pig production, up till now, the genetic
mutations related to PSL are still unknown. The micro-
array studies provide some potential targets, however,
they only measure the relative abundance of predefined
transcripts. In addition, the timing of samples may im-
pact the results especially as the muscle transcriptome is
very dynamic during piglet development [16, 17]. It is
also unclear what period of development is related to a
PSL outcome. Therefore, GWAS may be a better strat-
egy than the comparative transcriptome analysis to iden-
tify the causative genes and mutations for PSL. GWAS
using a case/control design has successfully identified
multiple loci for complex diseases and traits in livestock
[18-23] during the last decade. Motivated by further
clarifying the genetic basis of PSL, we conducted a pilot
investigation by GWAS to identify the potential genomic
regions and genes affecting PSL using a case/control
design.

Methods

Animals and data collection

Animals used in this study were raised at the Hubei
Tianzhong Stock Corporation (Hubei, China) from
January 2012 to October 2013. The farm is one of the
national core pig breeding farms and part of the China
swine genetic improvement program. According to the
farm’s production records, PSL piglets were observed in
more than 1% of newborn piglets, especially in male pig-
lets during that period. The farrowing sows and piglets
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were kept in farrowing crates before weaning. The PSL
affected animals were defined as having the hind legs of
the piglets splayed sideways showing an impaired ability
to stand and walk 24 h after birth. The ear tissues of 192
pigs, including 76 affected and 116 normal were
collected from four populations (Duroc, Landrace,
Yorkshire and one crossbred of Landrace x Yorkshire)
by using ear punches. When one affected piglet was col-
lected, one to three the same breed normal piglets with
similar weight and size by visual assessment from the af-
fected or the other normal litters were also collected at
the same time. The 76 affected piglets were collected in
53 affected litters and the number of sampled cases in
each affected litter ranged from 1 to 5. For the 116 nor-
mal animals with similar birthdate to the affected piglets,
47 animals were from 47 affected litters and 69 animals
were from 69 normal litters which had common ances-
tors with the affected litters tracking back 2 ~ 5
generations.

Genotyping and quality control

Ear tissues for 192 animals were collected and stored in
75% alcohol for DNA extraction. DNA was extracted
using a phenol/chloroform method and diluted to a final
concentration of 50 ng/pL. Genotyping was conducted
at Delta Genomics (Edmonton, AB, Canada) using
[lumina PorcineSNP60 v2 Genotyping BeadChip. Only
the SNPs mapped in the Sscrofa 10.2 genome assembly
were used.

The quality control of genotype of 192 animals was
performed using PLINK v1.07 [24] to remove SNPs with
a call rate less than 90%, a minor allele frequency (MAF)
less than 0.01 and a significant deviation from Hardy-
Weinberg equilibrium (P < 107°). Moreover, animals
with more than 10% missing genotypes were removed
from the data set. After quality control, a final set of
43,495 SNPs from 185 animals (73 cases vs. 112
controls) were retained for further statistical analysis
(see Table 1).

GWAS analysis

After quality control, pairwise kinship was estimated using
genome-wide autosomal SNP information by ibs function
in the GenABEL package [25]. Then principal compo-
nents (PCs) derived from genomic kinship matrix were
used to correct population structure arising from different
populations used in the study. Based on Kaiser’s Criterion
[26], the first six PCs with eigenvalues bigger than one
(14.96, 4.73, 1.68, 1.38, 1.23, 1.07) were selected as fixed
factors for correcting the population structure. By logistic
regression, sex was found to be significant (P < 107°) for
the development of PSL and selected as another fixed fac-
tor. Eventually the GWAS was performed by applying
principal component analysis (PCA), which is known as
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Table 1 Sample information for GWAS
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Normal-Male Normal-Female Affected-Male Affected-Female Total
Yorkshire 18 49 34 3 104
Duroc 8 20 10 1" 49
Landrace 4 8 5 2 19
Crossbreed 0 5 6 2 13
Total 30 82 55 18 185

EIGENSTRAT [27] and implemented in the GenABEL
package [25] by using egscore function. The statistical
model was: Y = S+(PC; + PCy+ ... + PCg) + SNP; + e,
where Y is a vector of phenotypic values, S is a vector of
sex, PC; is ith PC vector, SNP; is the genotype vector for
SNP;, and e is a vector of residuals.

In consideration of multiple testing, the significance
level was corrected using the Bonferroni method. The
genome-wide significance threshold was set at P < 0.05/N
(0.05/43,495 = 1.15 x 107°), where N is the total number
of SNPs tested in the analysis after quality control. While
the chromosome-wide significance threshold was set at
P < 0.05/M (0.05/5007 = 9.98 x 10%), where M is the max
number of SNPs among each chromosomes (SSC 1 had
the max number of SNPs (5007)) after quality control.

The bioinformatics databases Ensembl (http://
www.ensembl.org/) and KEGG (http://www.genome.jp/
kegg/) were used for the candidate gene screening. Only
the nearest genes to the significant SNPs were considered
in view of linkage disequilibrium (LD) decay as the dis-
tance between marker and QTL increased [28-32].

Results and discussion

Phenotype and SNP characteristics after quality control

In this study, the affected animals were characterized by
the hind legs splaying sideways and the forelegs being
normal, in accordance to the fact that some similar traits
of the hind leg and fore leg structure could be classed
into different categories [33]. After quality control of the
genotypes, a final set of 185 animals (73 cases vs. 112
controls) remained for further statistical analysis (see
Table 1). The remaining 185 animals were from four
populations: Yorkshire, Duroc, Landrace and a Cross-
bred of Yorkshire and Landrace. Among 73 cases, there
were more male piglets than male (55 males vs. 18
females), which was consistent with the fact that the
farm’s production records indicating male piglets with
higher risk of being affected and the previous investiga-
tions [5-7]. Logistic regression analysis proved that sex
was a significant factor (P < 10~%). Moreover, androgenic
steroids including testosterone could increase skeletal
muscle mass and growth [34, 35], thus indicating that
sex was an important factor contributing to the develop-
ment of PSL.

After quality control, a final set of 43,495 SNPs includ-
ing 42,462 autosomal SNPs were retained, thus provid-
ing a uniform genome-wide coverage with mean spacing
of 59.5 kb and median spacing of 33.3 kb.

Population structure

Pairwise kinship was estimated using the genome-wide
42,462 autosomal SNPs. The first two PCs derived from
genomic kinship matrix were shown in Fig. 1. Clusters
were detected and corresponded to the different popula-
tions. It was noted that one Yorkshire individual was
clustered with the Duroc population and another two
Yorkshire individuals were clustered with the Landrace
population, which might be breed registry errors in the
farm. In addition, two crossbred pigs were not clustered
with any populations, which might result from the use
of the wrong breeds during intercross mating. However,
no irregular distribution of the affected/unaffected ani-
mals was seen throughout the clusters. In this study,
PCs were preferred to be used for population structure
correction rather than directly using breeds to separate
the animals into definitely discrete groups, since PCs
could infer continuous genetic variations in the sample
population which had some relationship between
individuals [27]. Moreover, PCs were less influenced by
the connections between the breeds (crossbreed of
Landrace x Yorkshire) and several breed registry errors.
Because of the incomplete pedigree information and dif-
ferent populations in the study, genomic kinship was
used for PCA for the higher correctness and accuracy
than pedigree. More importantly, the genomic kinship
could connect and compare multiple breeds or lines,
which could not be connected when the pedigree is un-
clear or unknown [36, 37].

For GWAS, one of the most important sources of false
positive association was a sample consisting of a mixture
of breeds [32]. Fortunately this problem could be
avoided by fitting the statistical model with the known
breeds [38] or the PCs [37]. both of which could correct
the population structure, while we ignored this problem
in our previous study [39]. It should be noted that the
top PCs could reflect family relatedness [40], although
PCA could not explicitly model family structure and
cryptic relatedness compared with a mixed linear model.
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Given that mixed linear model association could suffer a
severe loss of power due to case/control ascertainment
[41], PCA was used in this GWAS instead of mixed lin-
ear model association.

Potential genes identified by GWAS

The association analysis was performed for 43,495 SNPs
distributed over SSC1-18 and SSCX. The genome-wide
and chromosome-wide significant thresholds were set at
1.15 x 107° (=0.05/43,495) and 9.98 x 107° (=0.05/5007)
respectively according to Bonferroni correction. The
Manbhattan plot of the —logl0 based p-values was pre-
sented in Fig. 2. In total, seven chromosome-wide sig-
nificant SNPs were identified on five autosomes (SSC1,
SSC2, SSC7, SSC15 and SSC16), while no SNPs
exceeded the genome-wide significant threshold. In this
study, the Bonferroni method was used as a very strict
correction for multiple testing; consequently, the
chromosome-wide significant SNPs should also be taken

into consideration. Chromosome-wide significant SNPs
and the nearest genes were shown in Table 2.

HOMER1

The two most significant SNPs ALGA0014296 (at
89.8 Mb) and ALGA0014308 (at 90.0 Mb) on SSC2 are
located in a 170 kb high LD block (r> = 1), which
covered the HOMERI gene. According to the Pig EST
Data Explorer (PEDE, http://pede.dna.affrc.go.jp/), the
HOMERI gene expresses in pig longissimus [42]. The
longissimus was reported to be the most frequently and
evidently affected muscle of PSL by histochemical study
[8]. The function of HOMERI in pigs has not been fully
researched, however in Zebrafish embryos HOMER-1b
was the target gene of MicroRNA-3906 which regulated
fast muscle differentiation and calcium homeostasis [43].
In addition, Stiber et al. [44] showed that mice lacking
HOMERI exhibited a myopathy characterized by de-
creased fiber cross-sectional area and skeletal muscle

~logyo(P - value)
4
1

significant SNPs on SSC2 overlapped in the figure

Chromosome

Fig. 2 Manhattan plot of the genome-wide association study with PSL. SSC1-18 and SSCX are shown in different colors. The red horizontal dash
line indicates the genome-wide significance level, and the black dash line indicates the chromosome-wide significance. Two chromosome-wide
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Table 2 Chromosome-wide significant SNPs for PSL (new)
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SNP Location MAF Nearest gene Strand Distance to the Raw p value
(SSC:bp) (case/control) nearest genes (bp)
ASGA0001519 1:21,382,287 0.461/0.455 RAB32 - 40,041 9.32E-06
ALGA0014296 2:89,825,751 0.240/0455 IMY/ HOMER1 +/— 15,695/18609 3.61E-06
ALGA0014308 2:89,995,349 0.240/0.455 HOMER1 - 0 3.61E-06
H3GA0022494 7:98,558,186 0.253/0.107 ENSSSCP00000021921 + 235,866 731E-06
ALGA0087037 15:131,897,923 0.356/0.482 TNPI1 - 97,522 3.64E-06
MARC0003725 15:131,919478 0.445/0.420 TNPI1 - 119,107 8.44E-06
MARC0006026 16:33,866,754 0.323/0.205 ITGA1 + 74317 8.71E-06

force generation. Moreover, they also observed a signifi-
cant decreased expression for HOMERI in the mouse
model of Duchenne’s muscular dystrophy, which is a re-
cessive X-linked form of muscular dystrophy resulting in
muscle degeneration and premature death [45]. Further-
more, KEGG pathway analysis indicated that HOMER is
involved in the FOXO signaling pathway, which regu-
lated muscle atrophy, glycolysis/gluconeogenesis metab-
olism, and apoptosis. On the basis that PSL was
characterized by decreased muscle fiber size in muscles
[4], then the HOMERI gene could be regarded as a po-
tential causative gene for PSL. In pigs, the HOMERI
might play an important role in glycogen metabolism
and muscle development during piglet birth, when there
was a transition of slow-oxidative to fast-glycolytic fiber
types, and the liver and skeletal muscles served as the
first important energy stores [46].

MY

The other candidate gene on SSC2, /MY, is located up-
stream of the LD block and 15.7 kb away from the sig-
nificant SNP ALGA0014296 (at 89.8 Mb). /MY is an
important P53 cofactor and controls actin dynamics in
motile cells [47]. In pigs, JMY has important roles in oo-
cyte maturation [48] and early embryo development
[49]. In consideration of JMY as a regulator of actin fila-
ment assembly, it might play an important role in con-
trolling and maintaining the shape and internal structure
of muscle fibers. Thus JMY could be regarded as a candi-
date gene for PSL and further studies should focus on
the investigation of its function in the late fetal or early
postnatal period. In addition, JMY was reported to be re-
lated to severity of ankylosing spondylitis (AS) in
Chinese Han patients [50, 51]. AS caused pain and
swelling at large limb joints, especially at the knees in
human beings. While in prepubescent cases, pain and
swelling might also manifest in the ankles and feet. The
mortality rate of male patients was significantly
(P < 0.001) higher than that of female patients [52]. PSL
was characterized by an impaired ability to stand and
walk after birth [2], and the higher incidence in male

piglets was confirmed in both our study and previous in-
vestigations [5-7]. Intuitively, it should be reasonable to
assume that PSL might be an animal AS disease model
affected by JMY, such as piglets affected with AS could
not stand and walk because of the pain from large limb
joints.

ITGA1

On SSC16, the nearest gene ITGAI is located 94.3 kb
upstream of the significant SNPs MARC0006026 (at
33.9 Mb). The ITGAI gene encodes the alpha 1 subunit
of integrin receptors and could negatively regulate cell
proliferation [23]. Its homologous gene ITGAS was
found differentially expressed in the hind leg muscles
between normal and PSL piglets [13]. Moreover, ITGA
was highly expressed at 35 days-post-coitus in Landrace
and 49 days-post-coitus in Lantang (Chinese indigenous
obese pig breed), indicating that /TGA was important
for later muscle differentiation and proliferation [53].
Consequently, the ITGAI should be highlighted as a
candidate gene related to PSL.

RAB32

On SSC1, the nearest gene RAB32 is located 40 kb up-
stream of the significant SNP ASGA0001519 (at
21.4 Mb). The RAB32 encodes an A-kinase anchoring
protein and participates in both mitochondrial anchor-
ing and dynamics [54]. In addition, RAB32 was also
highlighted as an important potential gene regulating
lipid metabolism [55]. Ultrastructural analysis of the
muscle of PSL and normal piglets (longissimus dorsi and
biceps femoris) clearly demonstrated that mitochondria
were often located near the sarcolemma of the normal
piglets, but presented within the sarcoplasm of the PSL,
which resulted in the increased accumulation of glyco-
gen in the muscles of PSL [11]. It should be noted that
glycogen is the first energy store in the piglet at birth. If
it could not be properly metabolized, then protein has to
be consumed as the substitute, thus finally inducing in-
sufficient energy and higher mortality rate [56]. Further-
more, the total amount of muscle glycogen was several
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times as great as the total amount of liver glycogen, and
most of glycogen was depleted during the first day of life
[57]. Mitochondria are particularly important for glyco-
gen and lipid metabolism during the first few days after
birth, supporting RAB32 as a candidate gene for PSL.

TNP1 and ENSSSCP00000021921

On SSC15, the two chromosome-wide significant SNPs
ALGAO0087037 (at 131.9 Mb) and MARC0003725 (at
131.9 Mb) are located in a 22 kb region of moderate LD
(r> = 0.45) where no genes are identified. The nearest
gene TNPI is located 97.5 kb away from the significant
SNP ALGAO0087037. The TNPI gene product plays a
major role during spermatogenesis and spermatid differ-
entiation in pig [58], and had an impact on reproductive
potential of sperm in mouse [59]. On SSC7,a novel gene
ENSSSCP00000021921 is the nearest to the significant
SNP H3GA0022494, however the function of the gene is
still not reported. Comparative genomic analysis for 17
eutherian mammals in Ensembl (http://www.ensembl.org)
shows that the gene of ENSSSCP00000021921 is RAD51B,
which encodes a member of the RADSI protein family es-
sential for DNA repair. According to the known function
of the genes, it seems unlikely that these genes (on SSC15
and SSC7) are promising loci for SPL.

Conclusion

In this GWA study, PCA was used to adjust for popula-
tion structure in order to reduce spurious associations.
After strict Bonferroni correction, seven chromosome-
wide significant SNPs associated with PSL were identi-
fied for the limited sample size and low density SNPs.
Those SNPs were located on SSC1, SSC2, SSC7, SSC15,
SSC16 and four genes (HOMERI and JMY on SSC2,
ITGA1 on SSC16, and RAB32 on SSC1) related to
muscle development, metabolism and mitochondrial dy-
namics were suggested to be the most likely candidate
genes for PSL. Further analyses of these loci based on
additional genetic and functional studies are expected to
reveal the genetic mechanisms responsible for PSL.
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