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Abstract

Background: Genome-wide association studies involve detecting association between millions of genetic variants
and a trait, which typically use univariate regression to test association between each single variant and the
phenotype. Alternatively, Lasso penalized regression allows one to jointly model the relationship between all genetic
variants and the phenotype. However, it is unclear how to best conduct inference on the individual Lasso coefficients,
especially in high-dimensional settings.

Methods: We consider six methods for testing the Lasso coefficients: two permutation (Lasso-Ayers, Lasso-PL) and
one analytic approach (Lasso-AL) to select the penalty parameter for type-1-error control, residual bootstrap
(Lasso-RB), modified residual bootstrap (Lasso-MRB), and a permutation test (Lasso-PT). Methods are compared via
simulations and application to the Minnesota Center for Twins and Family Study.

Results: We show that for finite sample sizes with increasing number of null predictors, Lasso-RB, Lasso-MRB, and
Lasso-PT fail to be viable methods of inference. However, Lasso-PL and Lasso-AL remain fast and powerful tools for
conducting inference with the Lasso, even in high-dimensions.

Conclusion: Our results suggest that the proposed permutation selection procedure (Lasso-PL) and the analytic
selection method (Lasso-AL) are fast and powerful alternatives to the standard univariate analysis in genome-wide
association studies.
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Background
Genome-wide association studies (GWASs) involve
studying association between millions of genetic variants,
called “single nucleotide polymorphisms (SNPs)” and
different traits of interest. Essentially, a GWAS can be
viewed as a high-dimensional variable selection prob-
lem with the goal of finding SNPs that are significantly
associated with a phenotype of interest. GWASs have
predominantly been analyzed using univariate regression,
i.e. “single marker association” methods (SMA), where
one analyzes the marginal effect between an individual
SNP and the phenotype, while ignoring the influence of
other SNPs. Assuming that the phenotype is affected
by multiple SNPs, SMA neglects useful information
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regarding the structure of genetic association and hence
may lose power to detect relevant SNPs.
Alternatively, jointly modeling all SNPs may lead to

more accurate inference due to decreased residual vari-
ance in the phenotype of interest. However, given that the
number of SNPs greatly exceeds the sample size, standard
multiple linear regression techniques are no longer viable.
In contrast, penalized regression may be used to jointly
estimate regression coefficients in such settings. However,
developing valid methods for conducting inference on the
penalized regression coefficients remains an open area
of research.
Several papers have used penalized regression in

GWASs to perform variable selection, without conduct-
ing any rigorous inference on the selected variables. For
example, Waldmann et al. [1] applied penalized regres-
sion to a GWAS by using cross validation to select
tuning parameters, then compute the true positive and
false positive rates simply based on whether or not a
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coefficient is nonzero. Cross Validation attempts to opti-
mize the predictive performance of the model, but gives
no control on the type-I error rate. Furthermore, both
the software PUMA [2] and LOO indices of Wu et al.
[3] use penalized regression to perform variable selec-
tion, then fit a standard multiple linear regression model
using only those variables selected by the initial penal-
ized model. Their software return p-values for indi-
vidual non-zero regression coefficients using standard
likelihood-based tests for multiple linear regression. Wu
et al. [3] admit that these “pseudo p-values” are invalid
because they neglect the complex selection procedure of
obtaining the reduced model. Although these methods
are very fast, they cannot warrant control of the type-I
error rate.
One could potentially use resampling techniques to

generate correct tests for the individual coefficients in
the reduced model. Meinshausen [4] proposed a data-
splitting approach to p-values with FDR or FWER control.
However, sample splitting procedures may be quite con-
servative compared to methods that directly use the full
data [5], likely because they lose power to detect SNPs
with smaller effect sizes and minor allele frequencies.
Chatterjee and Lahiri [6], and Sartori [7] used cross val-
idation to select penalty parameters, then residual boot-
strap confidence intervals (and modifications thereof) to
conduct inference on the regression coefficients. Both
[6] and [7] focus on bootstrapping the Lasso in low-
dimensional settings. Through simulations, we investigate
the performance of the bootstrap and modified resid-
ual bootstrap when n is fixed and the number of null
predictors p0 → ∞.
All previously mentioned methods treat penalty param-

eter selection and inference as two separate problems.
In contrast, Ayers and Cordell [8] proposed a permu-
tation method to select penalty parameters for direct
control of the type-1-error rate. If the goal is to
detect the genetic variants that meet a certain thresh-
old for the level of significance, Ayers and Cordell [8]’s
technique gives us a computationally efficient way of
identifying these variants compared to previously men-
tioned resampling techniques. Similarly, Yi et al. [9]
proposed both a permutation and analytic method to
select penalty parameters for false-discovery rate con-
trol. We propose a modified version of the permuta-
tion method of Ayers and Cordell, and compare it with
the original method, as well as the analytic method
of Yi et al.
Other recently proposed methods of inference for

penalized regression not considered in this paper are
as follows: Zhang [10] and Javanmard [11] use a “de-
biased” Lasso, which attempts to remove the bias in
the Lasso coefficients, then constructs normal-based
confidence intervals using the transformed coefficients.

“Post-selection inference” or “selective inference” [12, 13]
is another recent development in inference for penal-
ized regression. Selective inference is described as “the
assessment of significance and effect sizes from a dataset
after mining the same data to find these associations".
For example, suppose one has used Lasso to “select”
relevant predictors among a pool of many potentially
relevant predictors. In particular, only predictors with
nonzero estimated coefficients are considered for infer-
ence, all other predictors are dismissed. Selective infer-
ence addresses the question of how to conduct valid
inference on the subset of selected predictors while
accounting for the complex data-dependent procedure
that selected those predictors in the first place. In
this paper, we decided to focus mainly on resampling-
based methods of inference for the Lasso, and thus
will not consider the de-biased Lasso or post-selection
inferential methods.
Furthermore, one major limitation of existing methods

of inference for penalized regression, as they’re currently
implemented in the statistical software R [14], is that they
require one to store the entire genotype matrix in RAM,
thus leading to great computational costs. In contrast, the
methods we consider take advantage of the bigmemory
R package [15] which allows one to work with high-
dimensional file-backed datasets that are larger than the
available RAM. An important feature of the bigmemory
package is the ability for multiple cores to share access
to the same big.matrix object, without having to create
an additional copy of the matrix in RAM at each core.
Thus the bigmemory package allows for memory effi-
cient parallel computing with high-dimensional matrices.
In addition, the biglasso R package [16] allows one to fit
Lasso penalized regression models using the bigmemory
R package.
Through simulations, we compare six methods for test-

ing the individual Lasso coefficients: two permutation and
one analytic selection procedures for type-1-error control,
residual bootstrap, modified residual bootstrap, and a per-
mutation test. As a benchmark, all methods are compared
to a standard single marker analysis. First we consider the
scenario where the sample size (n) is fixed, and the num-
ber of null SNPs p0 → ∞. We show that the bootstrap
methods andpermutation test becomeunstable as p0 → ∞;
however, both the permutation and analytic selection pro-
cedures appear to be powerful tools of inference, even in
high-dimensional settings. Lastly, we apply the Lasso with
both the permutation and analytic selection methods to
theMinnesota Center for Twins and Family Study [17, 18],
using 3853 subjects and 507,541 SNPs.

Methods
Consider a GWAS with n subjects, p SNPs (p > n),
and a quantitative phenotype YYY . Without loss of
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generality, assume there are no additional covariates.
Let xij denote the number of minor alleles the ith sub-
ject carries at the jth SNP (i.e. xij = 0, 1 or 2). Then
standardize all SNPs to have a mean of zero and vari-
ance of one. We focus on the scenario where the pro-
portion of null SNPs is large, i.e p0

p ≈ 1, and the
individual causal SNPs have relatively small effect sizes.
Typically GWASs are analyzed using a “single marker
analysis” (SMA), which tests the marginal effect of the jth
SNP as follows:

YYY = xxxjβj + εεε, εεε ∼ N
(
000, σ 2III

)
(1)

Then a t-test may be used to test the null hypothesis H0 :
βj = 0. The SMA applies model (1) to all j = 1, . . . , p SNPs
and obtains p-values from a t-distribution, then declares a
SNP significant if its p-value is less than or equal to some
desired significance level α. In practice, one may adjust for
multiple testing by controlling the family-wise error rate
or false-discovery rate (see [19] for a review), but we chose
not to address the issue of multiple testing in this paper.
Rather the aim of this paper is to compare a standard
SMAwith several multi-marker methods in their ability to
detect individual genetic variants that meet a desired level
of significance.
As an alternative to SMA, we consider jointly modeling

the main effects of all SNPs:

YYYn×1 = XXXn×pβββp×1 + εεεn×1, εεε ∼ N
(
000, σ 2III

)
(2)

Here we are interested in testing the conditional effect of
the jth SNP, i.e. the effect of SNP j conditional on the effect
of all other SNPs. Thus the following null hypothesis is of
interest:

H0 : βj
∣∣X(−j)X(−j)X(−j) = 0 (3)

However, given that p > n, standard multiple linear
regression techniques are no longer viable. In contrast,
Lasso [20] penalized regression allows one to estimate βββ

in high-dimensional settings as follows:

β̂ββλ = argmin
βββ

{
1
2
||YYY −XXXβββ||2 + λ||βββ||1

}
(4)

The subscript λ indicates that the Lasso estimator β̂ββλ

depends on the penalty parameter λ which controls the
rate of penalization in the estimated coefficients. In gen-
eral, as λ increases, the Lasso coefficients are shrunk
closer to zero. Typically Lasso yields a sparse solu-
tion of nonzero coefficients, and thus may be viewed
as a variable selection tool. When there is a group of
highly correlated predictors, the Lasso tends to only
select one predictor in the group [21]. It is unclear
if this property is disadvantageous for GWAS. If there
is a group of highly correlated predictors that repre-
sents a causal region and Lasso only detects one SNP
in that region; we have detected the region nontheless.

A followup analysis could easily find SNPs that are cor-
related with the detected SNP, if such SNPs would be
of interest.
Lastly, most of the methods discussed in this paper can

easily be extended to other sparse penalized regression
models such as SCAD [22], MCP [23], Elastic Net [24],
or Adaptive Lasso [25]. However, it is not the aim of this
paper to compare different penalty types, thus we decided
to focus only on the Lasso.

Permutations to select λ for type-1-error control
First we describe how to fit a Lasso model using a mod-
ified permutation method to select λ for control of the
type-1-error rate. Define the following decision rule:

D(Y ,XY ,XY ,X, λ) := Reject H0 : βj = 0 iff β̂λ,j �= 0 (5)

where β̂λ,j is the estimated Lasso coefficient of the jth SNP
for a given value of λ. Suppose there exists a value of λ,
called λα , that controls the type-1-error rate at level α

under decision rule (5). Ayers and Cordell [8] showed that
permutations can be used to estimate λα . We propose a
modified version of Ayers’ method:

1. Permute YYY to obtain “permuted dataset”: {YYYP,XXX}. Fit
a Lasso model to {YYYP ,XXX}, and then record the value
of λ that results in exactly s nonzero coefficients,
where s

p = α and p is the total number of predictors.
Define this value of λ as λ̂α .

(a) Note that if α < 1
p , the above method won’t

work. In this case, suppose we let α = 1
p·k for

some positive integer k. Then we can permute
Y , k additional times (resulting in k Lasso
models) and record the λ value in each of the
k replicates that results in exactly 1 nonzero
coefficient, giving {λi}ki=1. Then define
λ̂α = max{λi}ki=1, which effectively allows for
only 1 nonzero coefficient out of the k · p total
null coefficients, thus controlling the
type-1-error rate at level α.

In either case above, λ̂α will control the type-1-error
rate at approximately level α, however, we can
reduce the mean squared error of λ̂α as follows:

2. Repeat step (1) B times to obtain {λ̂α,i}Bi=1. Then
define the final estimator of λα as follows:

λ̄α = 1
B

B∑

i=1
λ̂α,i (6)

3. Finally, fit the Lasso model to the original data with
λ = λ̄α for type-1-error control at approximately
level α.
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The main modification we propose to Ayers’ method
is to estimate λα B times, then use the sample mean
(or median), λ̄α as the final estimate of λα . For high-
dimensional datasets, estimating λα a single time (as
does Ayers and Cordell [8]) may result in an unstable
model in terms of variable selection (see Fig. 4 for more
details). In contrast, as B increases, our estimator λ̄α will
select a stable model where the number of selected vari-
ables converges to some constant. Secondly, we propose
two practical modifications to Ayer’s method: 1) use the
bisection algorithm of Wu et al. [3] to efficiently find
the target λα , and 2) use the bigmemory and biglasso R
packages for memory-efficient parallel computing with
high-dimensional matrices.
Yi et al. [9] proposed a similar permutation and ana-

lytic method to select λ for false-discovery rate control,
which may easily be modified for control of the over-
all type-1-error rate [5]. Their methods require one to
fit a grid of penalty parameter values, with the hope
that at least one value on the grid achieves the desired
error rate. In contrast, our permutation method will
efficiently find the value of λ that gives the desired
error rate. Through simulations, we compare Lasso using
our modified permutation method to select λ for type-
1-error control (“Lasso-PL”) with the original Ayers’
method (“Lasso-Ayers”), as well as the analytic method of
Yi et al. (“Lasso-AL”).
Lastly, we present theoretical justification for using the

permutation method to select λ.

Theorem 1 Consider the linear model of the form YYY =
XXXβββ + εεε, where XXX is an n × p matrix of p independent
SNPs from n independent subjects, each standardized to
have a mean of 0 and variance of 1; and εεε ∼ N

(
000, σ 2IIIn

)
.

Consider the Lasso penalized regression model which can
be written in the form of (7), with parameter λ that
controls the overall rate of penalization. Then under deci-
sion rule (5), λ̄α (6) will control the type-1-error rate at
approximately level α.

Proof Without loss of generality, suppose we wish to
control the type-1-error rate at level α where α ≥ 1

p (the
proof will have to be modified when α < 1

p , see step (1a)
above for more info). Yi et al. [9] showed that βLasso

λ,j can
be defined as follows:

β̂Lasso
λ,j =

⎧
⎪⎨

⎪⎩

β̂OLS
j − λ if βOLS

j > λ

β̂OLS
j + λ if βOLS

j < −λ

0 if
∣∣β̂OLS

j
∣∣ ≤ λ

(7)

where λ ∈ (0,∞), and β̂OLS
j is defined as:

β̂OLS
j = 1

n

n∑

i=1
xijri(j), where ri(j) = yi −

∑

k �=j
xikβk . (8)

The key result of (7) and (8) is that β̂Lasso
λ,j is nonzero

iff |β̂OLS
j | > λ. Then permutingYYY approximates the global

null scenario: H0 : βββ = 000, which gives the following result:

β̂OLS
j ∼

H0
N

(
0,

σ 2

n

)
, ∀j = 1, . . . , p (9)

where the asymptotic variance of β̂OLS
j is σ 2

n

(
xxxᵀj xxxj

)−1 =
σ 2

n since all covariates are standardized such thatxxxᵀj xxxj = 1;
and Var(rrr(j)) = Var(YYY ) = σ 2 ∀j, since the SNPs explain
0% of the variance in YYY under the global null.
Next, define the main parameter of interest, λα , as the(
1 − α

2
) · 100% quantile of the distribution of β̂OLS

j , i.e.

Pr
(∣∣β̂OLS

j
∣∣ > λα

)
= α. Then we can estimate λα as

follows:

1. Permute YYY to obtain YYYP and fit a Lasso model to
{XXX,YYYP}. Define λ̂α as the value of λ such that exactly
α% of the penalized β̂Lasso

λ,j ’s are nonzero.
2. Then by Eqs. (7) and (8), α% of the β̂Lasso

λ̂α ,j
’s are

nonzero iff α% of the |β̂OLS
j |’s are > λ̂α . Therefore

λ̂α is the
(
1 − α

2
) · 100% sample quantile estimate of

λα . The asymptotic distribution of the sample
quantile estimator λ̂α is well known:

√p(λ̂α − λα)
D→

p→∞ N

⎛

⎜
⎝0,

(
1 − α

2
) (

α
2
)

φ
(√

nλα

σ

)2

⎞

⎟
⎠ (10)

where φ(·) is the pdf of a N(0, 1) random variable.
Thus λ̂α is a consistent estimator for λα , and will
control the type-1-error rate at approximately level α
for large p:

Pr
(
Reject H0 : βj = 0|βj = 0, λ̂α

)
= Pr

(
β̂Lasso

λ̂α ,j
�= 0

)

= Pr
(∣
∣∣β̂OLS

j

∣∣∣ > λ̂α

)

≈ α, ∀j = 1, . . . , p
(11)

The variability in our estimator can be reduced as
follows:

3. Repeat step (1), B times to obtain
{
λ̂α,b

}B
b=1 and

λ̄α = 1
B

∑B
b=1 λ̂α,b. Then λ̄α

P→ E(λ̂α) ≈ λα for large
p, and Var(λ̄α) = 1

BVar(λ̂α); thus λ̄α is a more
efficient estimator of λα .
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Finally, λ̄α will control the type-1-error rate at approxi-
mately level α for large p :

Pr(Reject H0 : βj = 0|βj = 0, λ̄α) = Pr
(
β̂Lasso

λ̄α ,j
�= 0

)

= Pr
(∣
∣∣β̂OLS

j

∣∣∣ > λ̄α

)

≈ α, ∀j = 1, . . . , p
(12)

The above theory holds when all SNPs are independent,
but may be conservative given dependency among SNPs
(see Breheny [5] for more details).
Lastly, we summarize the computational cost of fitting a

Lasso-PL model to a real dataset with 3853 subjects and
507,451 SNPs, using a combination of the glmnet [26],
bigmemory [15], and biglasso [16] R packages.

1. Use glmnet to find a reasonable starting window for
λα (≈ 2.5min): for a given significance level α, this
step is a one-time computational cost. It is necessary
to find a reasonable window for the target value λα ,
in order to speed up computation in step 3.
Technically this step could be done with the biglasso
R package, however, the algorithm we use to find a
reasonable starting window for λα took around 2.5
min with glmnet and over 1 h with biglasso. Thus we
recommend using glmnet for step 1.

2. Create the big.matrix object (≈ 10min): creating a
file-backed big.matrix object is a one-time
computational cost. In future R sessions, one can
instantaneously reload the big.matrix object without
any overhead.

3. Fit a biglasso model while estimating λα B times:
parallel computing with a base-R matrix object
would require one to create an additional copy of the
matrix within each core, thus leading to high
computational cost. In contrast, the bigmemory R
package allows multiple cores to share access to a
single copy of the dataset. Using 20 cores in parallel,
this step took around 1 h for B = 100.

The residual bootstrap andmodified residual bootstrap
For an introduction to the bootstrap, see Efron [27] and
Hesterberg [28]. Chatterjee and Lahiri [29] proved that the
standard residual bootstrap approximation to the Lasso
distribution may be inconsistent whenever one or more
components of the regression parameter vector are zero.
Chatterjee and Lahiri [6] proposed a “modified residual
bootstrap” for the Lasso as an attempt to overcome this
problem. However, in low-dimensional settings, Sartori
[7] found that the residual bootstrap worked “acceptably
well,” and that the modified residual bootstrap appeared

to offer no significant improvement. We consider the per-
formance of both the residual bootstrap and modified
residual bootstrap when n is fixed and p0 → ∞. The basic
setup of the residual bootstrap (“Lasso-RB”) is as follows:

1. Use 10-fold cross-validation to select λ, then keep λ

fixed throughout all remaining steps
2. Fit a Lasso model of the form YYY = XXXβββ + εεε and obtain

the Lasso estimate β̂ββλ

3. Calculate the residuals eee = YYY − ŶYY , where ŶYY = XXXβ̂ββλ.
Then center the residuals:
ececec = eee − ē̄ēe, where ēee = 1

n
∑n

i=1 ei
4. Draw a random sample with replacement of size n

from the centered residuals, call this e∗ce∗ce∗c
5. Define new outcome variable: Y ∗Y ∗Y ∗ = XXXβ̂ββλ + e∗ce∗ce∗c
6. Fit a Lasso model to {Y ∗Y ∗Y ∗,XXX, λ} and obtain the

bootstrap Lasso estimate β̂ββ
∗
λ

7. Repeat B times to get {β̂ββ∗
λ,b}Bb=1, for large B.

8. For all j = 1, . . . , p SNPs, construct the following
bootstrap confidence interval:
CIj =

(
2β̂λ,j − β̂∗

λ,j,(1− α
2 )
, 2β̂λ,j − β̂∗

λ,j,( α
2 )

)
, where

β̂λ,j,(γ ) is the γ ∗ 100th quantile of the bootstrap
distribution {β̂∗

λ,j,b}Bb=1
9. For all j = 1, . . . , p SNPs, reject H0:

βj = 0 ⇔ 0 �∈ CIj

The modified residual bootstrap (“Lasso-MRB”) makes
the following changes: step (3) uses the modified boot-
strap residuals ẽ̃ẽe = YYY − Ỹ̃ỸY , where Ỹ̃ỸY = XXXβ̃̃β̃βλ, and
β̃λ,j = β̂λ,jI

(|β̂λ,j| > τ
)
, for a given threshold τ .

Step (4) resamples with replacement from these mod-
ified centered residuals, call this e∗∗

ce∗∗
ce∗∗
c ; step (5) uses the

new response Y ∗∗Y ∗∗Y ∗∗ = XXXβ̃̃β̃βλ + e∗∗
ce∗∗
ce∗∗
c , then step (6) fits

a Lasso model to {Y ∗∗Y ∗∗Y ∗∗,XXX, λ} and obtains the mod-
ified bootstrap Lasso estimate β̂ββ

∗∗
λ . Lastly, step (8)

constructs the modified bootstrap confidence interval:(
β̂λ,j + β̃λ,j − β̂∗∗

λ,j,(1− α
2 )
, β̂λ,j + β̃λ,j − β̂∗∗

λ,j,( α
2 )

)
.

Permutation test p-values
Anderson and Legendre [30] provide an overview of per-
mutation tests for multiple linear regression. We extend
the permutation test of Manly [31] to the Lasso (“Lasso-
PT”) as follows:

1. Use 10-fold cross-validation to select λ, then keep λ

fixed throughout all remaining steps
2. Fit a Lasso model to {YYY ,XXX, λ} and obtain estimate β̂ββλ

3. Randomly permute YYY and call it YYYP . Fit the new
model YYYP = XXXβββ + εεε and obtain the permuted Lasso
estimate β̂ββ

P
λ . Repeat B number of times to obtain

{
β̂ββ
P
λ,b

}B

b=1
.
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4. For an individual predictor xxxj, calculate the
permutation p-value:

pj =
[∑B

b=1 I
(
|β̂P

λ,j,b| > |β̂λ,j|
)]

+ 1

B + 1

5. Reject H0 : βj = 0 ⇔ pj ≤ α, where α is the specified
significance level.

Results
Simulations
All simulated genotypes were generated with Vander-
bilt’s “GWA Simulator” program [32] using HapMap
Illumina300k CEU phased data (Utah Residents with
Northern and Western European Ancestry). The GWA
simulator can simulate genotypes for case-control
designs. We used the simulator to simulate genotypes on
a set of markers under the null hypothesis of no associa-
tion with the disease, and then simulated a quantitative
trait on these individuals using linear regression with a set
of genetic variants associated with the quantitative trait.
Only common variants with minor allele frequencies
greater than 0.05 were simulated.

Simulation 1
In Simulation 1, we are interested in the scenario where
the sample size (n) is fixed, the true causal effects are rel-
atively small, and the number of null SNPs p0 → ∞. Six-
hundred subjects were simulated with five independent
causal SNPs, each coming from a different chromosome.
Without loss of generality, we assume there are no addi-
tional covariates. The quantitative trait YYY was simulated
as follows:

YYY 600×1 = XXX600×5 βββ5×1 + εεε600×1, εεε ∼ N(000, III) (13)

After standardizing each SNP to have a mean of zero and
variance of one, βββ = 0.15JJJ5 (where JJJ5 is a vector of ones)
was chosen so that each causal SNP explains ≈ 2% of
the variation in YYY for a total R2 ≈ 0.10. Three-hundred
datasets were simulated according to (13). Lastly, we con-
sider five different settings where the number of null SNPs
varies from 0, 45, 300, 900, and 20,000. The null SNPs were
simulated from a chromosome independent of the causal
SNPs, and contain varying levels of correlation.
We compare a standard single marker analysis to the

Lasso using six different methods of inference on the
Lasso coefficients: two permutation and one analytic
methods to select λ for type-1-error control, residual
bootstrap, modified residual bootstrap, and a permuta-
tion test. In particular, we are interested in comparing
the performance of these methods as the number of null
SNPs p0 → ∞. Lastly, all methods are compared in terms
of their true positive rate (TPR): average proportion of
causal SNPs detected across the 300 simulated datasets;

and false positve rate (FPR): average proportion of null
SNPs detected across 300 simulated datasets.
Notice in Table 1 that only Lasso-PL and Lasso-AL con-

sistently have power greater than or equal to the standard
SMA. In general, in scenarios where there are not many
SNPs, Lasso-AL has slightly greater TPR than Lasso-PL,
presumably because Lasso-PL requires a large number of
SNPs in order to get a good estimate of λα (see proof of
Theroem 1). However, in the 20,000 null SNP scenario,
Lasso-AL is slightly conservative compared to Lasso-PL.
In our simulation study, Lasso-Ayers is consistently less

powerful than Lasso-PL (especially in the 0 and 45 null
SNP scenario), and has slightly inflated type-1-error in
the 45 null SNP scenario. A Wilcoxon signed rank test
to assess if the average false-positive rate (across 300
datasets) for Lasso-Ayers differs from the expected type-
1-error rate α = 0.01 produced a p-value of 0.016. Because
Lasso-Ayers only estimates λα a single time, there may be
high variability in λ̂α compared to Lasso-PL which esti-
mates λα B times then uses the sample mean (or median)
as its final estimate (this can clearly be seen in Table 2).
Thus on average, Lasso-Ayers is more prone to missing
potential causal SNPs by over-estimating λα , or under-
estimating λα and having excess false positives. Lasso-PL
appears to correct this by obtaining a more stable estimate
of λα , thus having increased power and better control of
the type-1-error relative to Lasso-Ayers.
Table 2 presents a comparison of λ̂α from Lasso-Ayers,

Lasso-PL, and Lasso-AL. Notice that Lasso-Ayers and
Lasso-PL, on average, select the same value of λ; how-
ever, Lasso-PL significantly reduces the variability in λ̂α ,
and thus may provide more accurate inference. Although
the variability in λ̂α may appear small for all methods, the
scale is relative, for small changes in λ can result in drasti-
cally different number of nonzero coefficients, especially
in high-dimensional settings. In the low dimensional set-
tings, the three different methods produce similar values
of λ̂α on average, with Lasso-Ayers being the most vari-
able. In the high-dimensional 20,000 null SNP scenario,
Lasso-AL appears to be slightly over-penalizing relative to
Lasso-PL and Lasso-Ayers.
When there is no null SNP, Lasso-RB and Lasso-MRB

are the most powerful models; but when there are 45
null SNPs, all of the bootstrap methods have significantly
inflated FPR. The reason the FPR is inflated may be
due to the theoretical work of [6, 29] which shows that
the bootstrap may become unstable given one or more
null predictors. In addition, notice as the number of null
SNPs increases, the bootstrap methods become increas-
ingly conservative, such that the power in the 20,000 null
SNP scenario is significantly less than the other compet-
ing methods.
Notice Figs. 1 and 2 show that the bootstrap methods

perfectly approximate the true Lasso distribution when
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Table 1 Comparison of methods given fixed sample size and increasing number of null SNPs, α = 0.01α = 0.01α = 0.01

Model 0 Null SNPs 45 Null SNPs 300 Null SNPs 900 Null SNPs 20,000 Null SNPs

Lasso-PL 0.840 0.831 (0.008) 0.841 (0.0081) 0.857 (0.0083) 0.841 (0.0095)

Lasso-AL 0.850 0.850 (0.0102) 0.851 (0.0089) 0.854 (0.0077) 0.828 (0.0079)

Lasso-Ayers 0.819 0.808 (0.0121) 0.836 (0.0096) 0.846 (0.0086) 0.838 (0.0095)

SMA 0.828 0.828 (0.0106) 0.828 (0.0101) 0.828 (0.01) 0.828 (0.01)

Lasso-PT 0.829 0.832 (0.0078) 0.827 (0.0073) 0.818 (0.0076) 0.560 (0.0013)

Lasso-RB 0.869 0.859 (0.0137) 0.847 (0.0106) 0.833 (0.0089) 0.555 (0.0012)

Lasso-MRB(t=0.001) 0.869 0.865 (0.0138) 0.850 (0.0105) 0.838 (0.0089) 0.556 (0.0012)

Lasso-MRB(t=0.005) 0.869 0.863 (0.0137) 0.849 (0.0105) 0.836 (0.009) 0.555 (0.0012)

Lasso-MRB(t=0.01) 0.869 0.864 (0.0139) 0.849 (0.0105) 0.837 (0.009) 0.556 (0.0012)

Lasso-MRB(t=0.03) 0.869 0.864 (0.0136) 0.849 (0.0102) 0.839 (0.0092) 0.558 (0.0013)

Lasso-MRB(t=0.05) 0.869 0.859 (0.0124) 0.841 (0.0099) 0.833 (0.0089) 0.559 (0.0013)

Models are compared by their true positive rate and false positive rate (in parentheses), across 300 simulated datasets, using a significance level of α = 0.01. Each column
represents a scenario where a different number of null SNPs were used (e.g. 0, 45, 300, 900, or 20,000)

there are no null SNPs. However, as p0 increases, the
bootstrap methods area no longer able to approximate
the true Lasso distribution; thus hypothesis testing using
the bootstrap may fail to control the type-1-error at the
correct level (as seen in the 45 and 20,000 null SNP
scenarios). In addition, notice that the modified resid-
ual bootstrap is unable to provide significantly better
approximations to the true Lasso distribution, compared
to the standard residual bootstrap in Fig. 1. We tried
a range of threshold values for the Lasso-MRB: t =
0.001, 0.005, 0.01, 0.03, and 0.05. For values of t ≤ 0.001,
the MRB performed nearly identical to the RB, and for
t > 0.05 the MRB degenerates to a large point mass at
zero. However, for all t ∈ (0.001, 0.05), the MRB does
not appear to significantly improve upon the standard
residual bootstrap.
Similar to the bootstrap methods, the permutation test

(Lasso-PT) becomes significantly conservative in the set-
ting with 20,000 null SNPs. One reason why the bootstrap
and permutation test perform so poorly as p0 increases
may be because using 10-fold CV to select λ in high-
dimensional settings is too stringent, resulting in over-
penalization of the coefficients.
According to Table 3, as the number of null SNPs

increases, the average λ selected by 10-fold CV increases
and gets very close to the true effect size of the causal

SNPs (0.15). Thus using 10-fold CV to select λ in
high-dimensional settings may be too stringent, resulting
in over-penalization of the coefficients, and thus lead to
conservative results. In the 20,000 null SNP setting, even
in the best case scenario where if every non-zero coeffi-
cient was declared significant, Lasso-PT and the bootstrap
methods would still all have TPR less than 0.6 (which is
much less than the competing methods). Thus clearly the
10-fold CV is over-penalizing the coefficients and making
it harder to distinguish the causal SNPs from the null SNPs
in this setting.
Given that the performance of Lasso-RB, Lasso-MRB,

and Lasso-PT significantly degenerates as p0 increases
(especially in the 20,000 null SNP scenario), we decided to
omit these methods from the remainder of our paper.

Simulation 2
Simulation 2 is similar to Simulation 1, except now
we allow each causal SNP to be correlated with sev-
eral neighboring SNPs. Specifically, each causal SNP was
allowed ten neighboring SNPs in varying levels of linkage-
disequilibrium (LD) with the causal SNP. Thus we have
five causal regions or “LD blocks” of SNPs that are asso-
ciated with the disease trait. Kruglyak [33] and Pritchard
[34] defined “useful LD” as having r > 0.316 or r2 >

0.1, where r is defined in [35]. Thus when picking the

Table 2 Comparison of λ̂αλ̂αλ̂α between Lasso-Ayers, Lasso-PL, and Lasso-AL

Model 0 Null SNPs 45 Null SNPs 300 Null SNPs 900 Null SNPs 20,000 Null SNPs

Lasso-Ayers 0.112 (0.0168) 0.112 (0.0165) 0.108 (0.0099) 0.105 (0.0065) 0.074 (0.0031)

Lasso-PL 0.110 (0.0042) 0.110 (0.0041) 0.109 (0.0034) 0.105 (0.0033) 0.074 (0.0022)

Lasso-AL 0.108 (0.0033) 0.107 (0.0033) 0.107 (0.0033) 0.106 (0.0033) 0.081 (0.0039)

The average selected value of λ that controls the type-1-error rate at level α = 0.01 is compared between three different methods across 300 simulated datasets. Standard
deviations are reported in parentheses



Arbet et al. BMC Genetics  (2017) 18:70 Page 8 of 15

Fig. 1 Comparison of the true Lasso distribution with the residual bootstrap approximation of the Lasso distribution. The black curve represents the
empirical “true” Lasso distribution of T1 = √

n(β̂λ,1 − β1), over 300 simulated datasets. The blue curve combines the residual bootstrap distribution
of T∗

1 = √
n(β̂∗

λ,1 − β̂λ,1) from all 300 datasets
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Fig. 2 Comparison of the true Lasso distribution with the modified residual bootstrap approximation to the distribution of β̂λ,1, with increasing
number of null SNPs. The black curve represents the empirical “true” Lasso distribution of T1 = √

n(β̂1 − β1), over 300 simulated datasets. The other
curves combine the modified residual bootstrap distribution of T∗∗

1 = √
n(β̂∗∗

λ,1 − β̃λ,1) from all 300 datasets
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Table 3 Average λ selected by 10-fold cross validation

Num. of Null SNPs Avg. λ (Std. dev.)

0 0.0007 (0.0013)

45 0.048 (0.011)

300 0.076 (0.013)

900 0.089 (0.015)

20000 0.136 (0.024)

For Lasso-RB, Lasso-MRB, and Lasso-PT: the average λ selected by 10-fold CV across
300 simulated datasets is reported for simulation scenarios with varying number of
null SNPs. Standard deviations are listed in parentheses

LD regions, we tried to ensure that each region had
several representative SNPs in “useful LD” with that
region’s causal SNP. A summary of each causal region’s LD
structure is as follows: in region 1, the average r2 between
the 10 neighboring SNPs with the true causal SNP was
0.18, with 3 SNPs having an r2 > 0.4 with the causal SNP
(max=0.52). In region 2, the average r2 was 0.24, with 4
SNPs having an r2 > 0.3 with the causal SNP (max=0.8).
In region 3, the average r2 equaled 0.29, with 3 SNPs hav-
ing an r2 > 0.4 with the causal SNP (max=0.65). In region
4, the average r2 equaled 0.33, with 4 SNPs having an
r2 > 0.4 with the causal SNP (max=0.81). In region 5,
the average r2 was 0.32, with 3 SNPs having an r2 > 0.4
with the causal SNP (max=0.67). Thus overall, each causal
region contains multiple SNPs that “represent” the region
by having moderate to large LD with the latent causal
SNP. Lastly, the five original causal SNPs were removed.
Thus the goal is to “detect” a causal region by detecting
at least one SNP that is in significant LD with the latent
causal SNP of that region. In reality, the true causal SNPs
are often not sequenced, thus our goal is to “tag” the true
causal SNP by detecting SNPs in significant LD with the
latent causal SNP.
In each simulated dataset, there are 1000 total SNPs. A

“null” SNP is defined as any SNP that is not in significant
LD with any of the five latent causal SNPs. We defined a
SNP as being in “significant LD” with a latent causal SNP
if r ≥ τ , and considered two different values for τ : 0.3
and 0.5.
Models are compared by their true positive rate (TPR),

linked true positive rate (LTPR), and false positive rate
(FPR). The TPR represents the average proportion of the
five causal regions that are detected across the three-
hundred simulated datasets. To detect a causal region, one
must detect at least one SNP that is in significant LD with
that region’s latent causal SNP. The LTPR is defined as the
average proportion of SNPs detected that are in significant
LD with at least one latent causal SNP. For example, in a
given dataset, suppose there are 20 SNPs that are in signif-
icant LDwith at least one latent causal SNP; and suppose a
model detects 10 of these SNPs as having significant asso-
ciation with the disease trait. This would result in an LTPR

of 10
20 = 0.5. In contrast, suppose I detect at least 1 SNP in

3 of the 5 causal regions that is in significant LD with that
region’s latent causal SNP. This would result in a TPR of
3
5 = 0.6.
Lastly, FPR(τ ) represents the average proportion of null

hypotheses that are falsely rejected, where a null SNP is
defined as not being in significant LD (using cutoff τ)with
any latent causal SNP.
Notice in Table 4 that Lasso-PL, Lasso-Ayers, and

Lasso-AL have higher TPR than SMA for both cutoffs
τ = 0.3 and 0.5. Recall here that TPR measures the ability
of a model to detect the true latent causal SNPs. Sec-
ondly, notice that SMA has significantly higher LTPR than
the Lasso models. We should expect this because given a
group of highly correlated SNPs that are also correlated
with a latent causal SNP, Lasso tends to only select one
SNP within the group, whereas SMA is likely to select
multiple SNPs. However, given that the Lassomodels have
higher TPR than SMA implies that many of the SNPs
SMA is picking up are redundant and not offering much
additional information about the latent causal SNP.
For a given correlation threshold τ , the penalized regres-

sion models appear to do a better job of controlling the
FPR at level α. This is probably because SMA ismore likely
to detect spurious SNPs that are weakly correlated with
the latent causal SNPs.
Interestingly, there appears to be negligible differ-

ence between Lasso-PL and Lasso-Ayers in Simulation
2; whereas in Simulation 1, Lasso-PL was consistently
more powerful and better controlled the type-1-error rate.
However, given the results from Simulation 1 and our real
data analysis, Lasso-PL appears to be the better method
despite the increased computational cost.

Minnesota Center for Twins and Family Study (MCTFS)
The Minnesota Center for Twins and Family Study
[17, 18] contains genotype information on over 520,000
SNPs using Illumina’s Human 660W Quad Array, with
8405 subjects clustered into 4-member families (each
with 2 parents and 2 children). The families are catego-
rized by sibling relationship type: MZ twins, DZ twins,
full siblings, adopted siblings, and mixed siblings (one
adopted, one biological). The overall goal of the study
is to explore the genetic and environmental factors of
substance abuse.
After quality control procedures, we focused on 3853

caucasian parents and 507,541 SNPs with MAF > 1%,
HWE p-values> 10−6, and genotype call rates> 99% (see
[18] for more details). Remaining missing genotypes were
imputed using a combination of Beagle [36] and minimac
[37], since existing penalized regression software cannot
handle missing data.
We decided to focus on two quantitative clinical

phenotypes created by [18], which were derived using
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Table 4 Comparison of TPR, LTPR, and FPR across 300 simulated datasets, each with five causal regions

Model TPR(t=0.3) LTPR(t=0.3) FPR(t=0.3) TPR(t=0.5) LTPR(t=0.5) FPR(t=0.5)

Lasso-PL 0.780 0.166 0.0087 0.762 0.232 0.0091
Lasso-Ayers 0.775 0.166 0.0092 0.755 0.232 0.0096
Lasso-AL 0.761 0.159 0.0075 0.741 0.222 0.0079
SMA 0.753 0.336 0.0101 0.740 0.448 0.0115

Each dataset contains n = 600 subjects, 1000 SNPs and five causal regions. All testing was done using significance level α = 0.01. See Section “Simulation 2” for a definition
of “causal region”, TPR, LTPR, and FPR

the hierarchical factor analytic approach of [38]. These
2 phenotypes of interest are: (1) Alcohol Consumption
(composite of measures of alcohol use frequency and
quantity); and (2) Non-Substance Behavioral Disinhibi-
tion (composite of measures non-substance use behav-
ioral disinhibition including symptoms of conduct dis-
order and aggression). For each phenotype, we first fit
a mixed linear model with covariates: Sex, Age, top 10
principle components, and a random intercept for Fam-
ily ID. In this case, two spouses are given the same
Family ID. The random intercept is included because
spouses may exhibit correlated substance abuse behav-
ior. The conditional residuals (that account for both fixed
and random effects) from this fit were used as the new
response for all subsequent genetic testing. Since Lasso-
PL can only use significance levels of the form α = s

p
or 1

p∗k for positive integers s and k, we used the sig-
nificance level α = 6

507,541 ≈ 1.18 ∗ 10−5 for all
tests. In practice, one would choose α apriori (e.g. 10−5),
then pick s or k to get as close to the desired α level
as possible.
Lastly, for each phenotype, we compared Lasso-PL

(with B = 100), Lasso-AL, and Lasso-Ayers to the
standard single marker analysis (SMA). Results for the
GWAS of Alcohol Consumption and Non-Substance
Behavioral Disinhibition can be found in Fig. 3 and
Tables 5-6.
Notice for the GWAS of Alcohol Consumption (Table 5)

that SMA, Lasso-AL, and Lasso-Ayers detected only 4
SNPs, whereas Lasso-PL detected 7 SNPs. For the GWAS
of Non-Substance Behavioral Disinhibition (Table 6),
SMA detected 7 SNPs, while Lasso-PL detected 6 of the
7 SNPs found by SMA, plus 3 additional SNPs. Note the
only SNP found by SMA that was not found by Lasso-PL
(rs831750), is significantly correlated with SNP rs1007227
(r2 = 0.788), which was detected by all models. How-
ever, Lasso-AL failed to tag SNP rs7314533 which was
detected by all other models. Thus there appears to be
slight evidence that Lasso-PL and Lasso-Ayers are more
powerful than Lasso-AL here. Secondly, the few SNPs that
Lasso-PL detected that SMA missed, were still borderline
significant for SMA. Thus overall, the three Lasso mod-
els performed very similar to the standard SMA, with
evidence that Lasso-PL may be slightly more powerful,
and Lasso-AL may be conservative. As expected, if there

are two highly correlated SNPs that are associated with
the trait of interest, SMA is more likely to detect both
SNPs compared to penalized regression; but Lasso-PL
and Lasso-Ayers are still detecting the associated region
nontheless.

Fig. 3 Comparison of selected number of SNPs in a GWAS with two
different quantitative traits: alcohol consumption (top) and
non-substance behavioral disinhibition (bottom). A total of 3853
subjects were used with 507,541 SNPs. All testing used significance
level α = 1.18 ∗ 10−5. Venn Diagrams were created using [39]
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Table 5 Alcohol Consumption GWAS

SNP Chr. Gene Distance from Gene (bp) SMA Lasso-PL Lasso-AL Lasso-Ayers

rs7574612 2 LHCGR -24421 9.4 ∗ 10−6 (S) S S S

rs4836266 5 GRAMD3 -235 1.3 ∗ 10−5 (N) S N N

rs211598 6 EYA4 -29329 9.3 ∗ 10−6 (S) S S S

rs4385434 8 hCG_1814486 -129857 5.5 ∗ 10−6 (S) S S S

rs7136989 12 GOLGA3 -244 1.7 ∗ 10−5 (N) S N N

rs6072694 20 PTPRT -1180 2.1 ∗ 10−6 (S) S S S

rs233278 21 KRTAP10-4 -1677 1.3 ∗ 10−6 (N) S N N

For Tables 5 and 6: “S” means ”significant” and “N” means “not significant” using significance level α = 1.18 ∗ 10−5. Note that Lasso-PL, Lasso-AL, and Lasso-Ayers cannot
provide exact p-values, but selects significant SNPs while attempting to control the type-1-error rate at level α. One could fit multiple penalized regression models and
estimate λ that controls the type-1-error rate at various orders of magnitude (e.g. 10−5, 10−6, etc) to get a better idea of the significance of each selected SNP (not done here)

A natural question is whether B = 100 permutations is
sufficient for obtaining an accurate estimate of λα in the
Lasso-PL models. We created a diagnostic tool to assess
whether or not B is large enough (see Fig. 4).
In order to indicate that we have obtained a stable model

in terms of variable selection (i.e. that λ̄α is an accurate
estimate of λα), we need the number of selected SNPs to
converge to some constant and the number of discrepant
SNPs to converge to 0, as the number of permutations
→ ∞. In Fig. 4, notice as the number of permutations
used in the estimator λ̄α increases, the number of SNPs
our model selects converges to 7; and the number of dis-
crepancies in selected SNPs between models using B and
B − 1 permutations converges to 0. Thus it appears that
using at least 15 permutations is sufficient for obtaining
a stable estimate of λα in this application. Note if we had
estimated λα only a single time, as does Ayers and Cordell
[8], we would have identified only four nonzero SNPs,
thus missing the three potentially associated SNPs that λ̄α

identifies when B > 15. Overall, B = 100 was more than
enough to ensure an accurate estimate of λα for the two
Lasso-PL models.
Lastly, a comparison of the computation time required

to fit each model can be found in Table 7. Notice that

all of the methods considered in this paper have rea-
sonable computational costs for a realistic large-scale
GWAS, with SMA and Lasso-Ayers being the fastest
methods. Although Lasso-AL is an analytical method, it
still requires one to fit a Lasso model using a grid of λ

values, then estimates the type-1-error rate for each value
of λ analytically, with the hope that at least one value of
λ within the grid obtains an estimated type-1-error rate
near the desired level α. This calculation cannot be done
apriori because it requires estimation of σ 2 in Eq. 2 for
each value of λ in the grid. We attempted to find a reason-
able window for the target value of λ beforehand, then fit a
grid of λ values within this window in order to reduce the
computational cost. However, it may be possible to further
reduce the computational time needed to fit Lasso-AL
models by picking a more optimal grid. Lastly, notice the
computation time for Lasso-Ayers with the Behavioral
Disinhibition trait is almost twice the time needed for
the Alcohol Consumption trait. This is because the bisec-
tion algorithm [3] we used to find the target value of λ

(in both Lasso-Ayers and Lasso-PL models) sometimes
has high variability in computation time. Thus it may be
possible to further reduce the computation time needed to
fit Lasso-Ayers or Lasso-PL by developing more efficient

Table 6 Non-substance behavioral disinhibition GWAS

SNP Chr. Gene Distance from Gene (bp) SMA Lasso-PL Lasso-AL Lasso-Ayers

rs831750 1 LOC440706 -1546 8.1 ∗ 10−6 (S) N N N

rs1007227 1 LOC440706 -698 7.5 ∗ 10−7 (S) S S S

rs17045125 2 ASB3 -3399 1.3 ∗ 10−5 (N) S N N

rs1384394 2 IKZF2 -32475 7.9 ∗ 10−6 (S) S S S

rs4527483 4 TSPAN5 -7088 6.9 ∗ 10−6 (S) S S S

rs3017726 4 LOC728847 -88224 1.3 ∗ 10−5 (N) S N N

rs6923361 6 MCHR2 -58727 5.0 ∗ 10−6 (S) S S S

rs2215987 7 THSD7A -177262 1.4 ∗ 10−5 (N) S N N

rs10504658 8 PXMP3 -718715 1.3 ∗ 10−6 (S) S S S

rs7314533 12 KCNC2 -81891 9.7 ∗ 10−6 (S) S N S
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Fig. 4 Diagnostic plots for Lasso-PL with the alcohol consumption quantitative trait. The figure on the left shows the total number of selected SNPs
for a given number of permutations (B) used in the estimator λ̄α . Ideally, as the number of permutations increases, the number of selected SNPs

should converge to some constant

(
since Var

(
λ̄α

) →
B→∞ 0

)
. The figure on the right shows the number of discrepant SNPs between models using B

and B − 1 permutations in the estimator λ̄α . Ideally, as B increases, the number of discrepant SNPs should converge to 0

algorithms for finding the target value of λ. However, our
current implementation of these methods seems reason-
able enough using modest computational resources.

Discussion
Penalized regression is a useful tool for GWASs that
allows one to simultaneously test the relationship between
hundreds of thousands of SNPs and a phenotype of inter-
est with a single model. Unlike the standard single marker
analysis, penalized regression jointly models all SNPs, and
thus provides a more realistic model of the structure of
genotype-phenotype association.
Through simulations, we compared six methods for

conducting inference on the individual Lasso coefficients:
two permutation and one analytic approachs to select
λ for type-1-error control, residual bootstrap, modified
residual bootstrap, and permutation test p-values. Simu-
lation 1 showed that for fixed sample size and increasing
number of null SNPs, the bootstrap methods fail to

Table 7 Computation time in minutes for alcohol consumption
and behavioral disinhibition GWASs

Method Cores Alc_CON Behav_Dis

SMA 20 8.0 7.9

Lasso-Ayers 1 10.5 19.9

Lasso-AL 1 29.2 29.4

Lasso-PL(B = 100) 20 57.1 62.0

Computation time in minutes for the models fit to the Alcohol Consumption and
Behavioral Disinhibition quantitative traits, using 507,541 SNPS from 3853 subjects

approximate the true Lasso distribution. In addition, the
modified residual bootstrap gave no significant advan-
tage over the standard residual bootstrap. In the sim-
ulation scenario with 20,000 null SNPs, the bootstrap
methods (Lasso-RB, Lasso-MRB) and permutation test
(Lasso-PT) become significantly conservative relative to
competing methods of inference. Therefore, we do not
recommend using the residual bootstrap, modified resid-
ual bootstrap, or permutation test with the Lasso in
high-dimensional settings.
Throughout our simulations, we found using our modi-

fied permutation approach or an analytic method to select
λ for type-1-error control (Lasso-PL and Lasso-AL) were
often the most powerful models, with power consistently
greater than or equal to the standard SMA. Unlike the
bootstrap or permutation test, Lasso-PL and Lasso-AL
performed consistently well, even in high-dimensional
settings. As to which method, Lasso-PL or Lasso-AL is
more powerful, our study gave mixed results. In Simula-
tion 1, Lasso-AL was more powerful in low-dimensional
settings, but Lasso-PL was more powerful in the 20,000
null SNP setting. In Simulation 2 and our real data analy-
sis, Lasso-PL was more powerful. For the real data GWAS
of Alcohol Consumption, Lasso-AL failed to tag a SNP
detected by the standard SMA, while both Lasso-PL and
Lasso-Ayers successfully tagged this SNP. Overall, both
Lasso-PL and Lasso-AL were consistently competitive
with the standard SMA, thus it seems eithermethod could
be recommended in practice.
Simulation 1 and the real data application gave evi-

dence that our modified permutation method to select
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λ (Lasso-PL) performs better than the original method
(Lasso-Ayers) proposed by Ayers and Cordell [8]. Lasso-
Ayers uses permutations to estimate the value of λ that
controls the type-1-error rate at the desired level α. They
use permutations to estimate the target λα only a sin-
gle time, whereas Lasso-PL estimates λα B times then
uses the sample mean (or median) as its final estimate,
thus reducing the variability in λ̂α . Simulation 1 showed
that Lasso-PL is consistently more powerful than Lasso-
Ayers, and does a better job of controlling the type-1-error
rate. Table 2 showed that Lasso-PL significantly reduces
the variability in λ̂α compared to Lasso-Ayers. In addi-
tion, Lasso-PL always detected more SNPs in the real data
analysis. By using permutations to estimate λα only a sin-
gle time, Lasso-Ayers is more prone to missing potential
causal SNPs by over-estimating λα , or under-estimating
λα and having excess false-positives. Lasso-PL corrects
this by obtaining a more stable estimate of λα .
Another key difference between Lasso-Ayers and Lasso-

PL, is that Lasso-PL should lead to more consistent
results. For example, if multiple Lasso-Ayers models are
fit to the same high-dimensional dataset, there may be
high variability in the number of selected relevant SNPs
between each model. Whereas if multiple Lasso-PL mod-
els are fit to the same dataset, they should all obtain the
same results given a sufficient number of permutations.
The main downsides of Lasso-PL, Lasso-AL, and Lasso-

Ayers is that they provide no confidence intervals or exact
p-values for individual SNPs. We are still guaranteed that
the subset of selected SNPs maintains approximate type-
1-error control at level α, but do not know exactly “how
significant” each selected SNP is. One could fit multiple
Lasso-PL or Lasso-AL models and estimate λ that con-
trols the type-1-error rate at various orders of magnitude
(e.g. 10−5, 10−6, etc) to get a better idea of the signifi-
cance of each selected SNP, however, this would greatly
increase the computational cost. Nonetheless, if our goal
is to identify the genetic variants that meet a pre-specified
level of significance, then Lasso-PL and Lasso-AL are fast
and powerful alternatives to the standard single marker
analysis.
Lastly, throughout this paper the methods we use con-

trol the overall type-1-error rate. However, these methods
can easily be modified for control of the family-wise-error
rate at level α by using the significance level α∗ = α

p where
p is the total number of SNPs or estimated number of
effective tests. For controlling the false-discovery rate with
penalized regression, see [9].

Conclusion
Developing valid methods to test Lasso coefficients in
high-dimensional settings remains a challenging area
of research. Through simulations, we’ve shown that
the residual bootstrap (Lasso-RB), modified residual

bootstrap (Lasso-MRB), and permutation test (Lasso-
PT) become practically intractable in high-dimensional
settings (p >> n). However, our modified permuta-
tion method to select λ for type-1-error control (Lasso-
PL) and the analytic method of Yi et al. [9] (Lasso-AL)
nearly always outperformed the standard univariate anal-
ysis in both simulations and real data application. The
bigmemory and biglasso R packages may be used to
fit high-dimensional Lasso-PL or Lasso-AL models with
memory-efficient parallel computing. For a real dataset
with 3853 subjects and 507,451 SNPs, Lasso-PL with
B = 100 permutations took around one hour using 20
cores in parallel, while Lasso-AL took less than 30 min
with a single core. Therefore, we recommend Lasso-PL
or Lasso-AL as fast and powerful alternatives to the stan-
dard single marker analysis in genome-wide association
studies.
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