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Abstract

Background: For dichotomous traits, the generalized disequilibrium test with the moment estimate of the
variance (GDT-ME) is a powerful family-based association method. Genomic imprinting is an important epigenetic
phenomenon and currently, there has been increasing interest of incorporating imprinting to improve the test
power of association analysis. However, GDT-ME does not take imprinting effects into account, and it has not been
investigated whether it can be used for association analysis when the effects indeed exist.

Results: In this article, based on a novel decomposition of the genotype score according to the paternal or
maternal source of the allele, we propose the generalized disequilibrium test with imprinting (GDTI) for complete
pedigrees without any missing genotypes. Then, we extend GDTI and GDT-ME to accommodate incomplete
pedigrees with some pedigrees having missing genotypes, by using a Monte Carlo (MC) sampling and estimation
scheme to infer missing genotypes given available genotypes in each pedigree, denoted by MCGDTI and MCGDT-
ME, respectively. The proposed GDTI and MCGDTI methods evaluate the differences of the paternal as well as
maternal allele scores for all discordant relative pairs in a pedigree, including beyond first-degree relative pairs.
Advantages of the proposed GDTI and MCGDTI test statistics over existing methods are demonstrated by
simulation studies under various simulation settings and by application to the rheumatoid arthritis dataset.
Simulation results show that the proposed tests control the size well under the null hypothesis of no association,
and outperform the existing methods under various imprinting effect models. The existing GDT-ME and the
proposed MCGDT-ME can be used to test for association even when imprinting effects exist. For the application to
the rheumatoid arthritis data, compared to the existing methods, MCGDTI identifies more loci statistically
significantly associated with the disease.

Conclusions: Under complete and incomplete imprinting effect models, our proposed GDTI and MCGDTI methods,
by considering the information on imprinting effects and all discordant relative pairs within each pedigree,
outperform all the existing test statistics and MCGDTI can recapture much of the missing information. Therefore,
MCGDTI is recommended in practice.
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Background
Genomic imprinting is an important epigenetic
phenomenon in studying complex traits, where the
expression levels of certain genes rely on their parental
origin [1–3]. Morison et al. [4, 5] constructed an
imprinted gene and parent-of-origin effect database to
collect genes that show imprinting effects, which has
been updated by Glaser et al. [6] to include parental ori-
gin of de novo mutations. Furthermore, some researches
have demonstrated that genomic imprinting plays an
important role in several human genetic diseases such as
Beckwith-Wiedemann syndrome, Silver-Russell syndrome,
pseudohypoparathyroidism and transient neonatal dia-
betes mellitus [7–10].
For a diallelic marker locus, there have been many

family-based methods to test for the association
between genotype scores and dichotomous traits
[11–15]. Among them, the generalized disequilibrium
test with the moment estimate of the variance
(GDT-ME) [15] is a powerful method, which is the
generalization of the traditional transmission disequi-
librium test [11] by using the genotype differences
between all discordant relative pairs (including those
beyond first-degree relatives) within a family. Currently,
there has been increasing interest of incorporating im-
printing to improve the test power of association analysis.
However, GDT-ME does not take imprinting effects into
account, and it has not been investigated whether it can
be used for association analysis when the effects indeed
exist. On the other hand, Xia et al. [16] developed the
transmission disequilibrium test with imprinting for quali-
tative traits based on two-generation nuclear families,
while it is not suitable for extended pedigrees. As such,
the pedigree disequilibrium test with imprinting (PDTI)
and its extension Monte Carlo (MC) PDTI (MCPDTI) to
accommodate pedigrees with missing genotypes were pro-
posed to test for association, which consider the influence
of imprinting on association study [17]. However, they
only utilize the genotype differences between all first-
degree relative pairs in a family, which may reduce their
test powers if ignoring the information on the genotype
differences between beyond first-degree relatives.
To incorporate imprinting effects into association

analysis, in this article, we develop a novel decompos-
ition of the genotype score of each individual according
to the paternal or maternal source of the allele. Based on
these paternal and maternal allele scores, we propose
the generalized disequilibrium test with imprinting
(GDTI) for association for complete pedigrees without
any missing genotypes. Then, borrowing the idea of
Zhou et al. [18] and Ding et al. [19], we further extend
GDTI and GDT-ME to accommodate incomplete
pedigrees where the genotypes of some individuals in
pedigrees are missing, based on a MC sampling and

estimation scheme to infer the missing genotypes given
the observed genotypes in each pedigree, which are
denoted by MCGDTI and MCGDT-ME, respectively.
Advantages of the proposed GDTI and MCGDTI test
statistics over existing methods are demonstrated by
simulation studies under various simulation settings and
by application to the rheumatoid arthritis (RA) dataset
[20]. Simulation results show that the proposed GDTI,
MCGDTI and MCGDT-ME control the type I error
rates well under the null hypothesis of no association
and no imprinting. The existing GDT-ME and the pro-
posed MCGDT-ME can be used to test for association
even when imprinting effects exist. MCGDTI can recap-
ture much of the missing information. Further, the
proposed tests outperform the existing methods under
complete, incomplete and no imprinting effect models.
For the real data application, compared to the existing
methods, MCGDTI identifies more loci statistically signifi-
cantly associated with RA after Bonferroni correction.

Methods
Notations
Suppose a diallelic marker locus with alleles M1 and
M2, and three possible genotypes are respectively
M2M2, M1M2 and M1M1. We consider a disease
susceptibility locus with the disease allele D and the
normal one d, and the corresponding ordered geno-
types are D/D, D/d, d/D and d/d with penetrances f2,
f10, f01 and f0, respectively. f10 = f01 indicates no
imprinting effects at the disease susceptibility locus.
Further, the coefficient of linkage disequilibrium (LD)
between alleles M1 and D is taken as LD ¼ P DM1ð Þ−
PDPM1 , where P(DM1) is the frequency of haplotype
DM1, and PD and PM1 are the allele frequency of D
and M1, respectively. Suppose that we collect n
independent pedigrees. Within the ith pedigree which
contains Ni family members (i=1, 2, …, n), without
loss of generality, we assume that the first Ai-
individuals are affected and the other Ui =Ni − Ai

members are unaffected. Let Yij be the disease status
of the jth individual in the ith pedigree (i=1, 2, …, n;
j=1, 2, …, Ni), i.e. Yij= 1 (0) denotes that the individ-
ual is affected (unaffected).

Existing generalized disequilibrium test with moment
estimate of variance
We begin by describing the existing GDT-ME test [15].
For convenience, we define the genotype score Xij by the
number of allele M1 in the genotype of the jth individual
in the ith pedigree, i.e. Xij=0, 1 and 2 for the genotypes
M2M2, M1M2 and M1M1, respectively. As such, the
logistic regression model is
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log
P Y ij ¼ 1
� �

1−P Y ij ¼ 1
� � ¼ β0 þ β1Xij; ð1Þ

where β0 is the intercept, and β1 is the regression coeffi-
cient; Yij is the disease status of the jth individual in the
ith pedigree. Then, the GDT-ME test statistic can be
expressed as follows, which is used to model the associ-
ation between the disease status and Xij:

GDT−ME ¼
Pn

i¼1 SiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 S

2
i

q
¼

Pn
i¼1

PAi
j¼1

PNi
k¼Aiþ1 Xij−Xik

� �
1
NiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

PAi
j¼1

PNi
k¼Aiþ1 Xij−Xik

� �
1
Ni

� �2r ;

ð2Þ

where Si ¼
PAi

j¼1

PNi
k¼Aiþ1 Xij−Xik

� �
1
Ni

is the score of the
ith pedigree and

Pn
i¼1S

2
i is an unbiased moment

estimate of the variance of
Pn

i¼1Si . The variance ofPn
i¼1Si can also be estimated based on the informa-

tion on kinship coefficients when identity by descent
(IBD) is unknown [15]. For convenience, we denote
the corresponding test statistic by GDT in this
article.

GDTI for complete pedigree data
Although GDT-ME is a powerful association test and
is robust to population stratification (PS) [15], it does
not take the information on imprinting effects into
consideration. In this article, we are going to investi-
gate whether GDT-ME can be used to test for associ-
ation when there are imprinting effects. Moreover, we
propose the following generalized disequilibrium test
incorporating imprinting effects (GDTI). Note that in
GDT-ME, the genotype score Xij is coded as the
counts of allele M1 for the jth individual in the ith

pedigree, i.e.

Xij ¼
0; M2M2

1; M1M2

2; M1M1

8<:
To incorporate the information on imprinting effects

into analysis, we divide the Xij into two parts, Xij
pð Þ and

Xij
mð Þ , according to the paternal or maternal source of the

allele, where Xij ¼ Xij
pð Þ þ Xij

mð Þ
, and Xij

pð Þ and Xij
mð Þ are

respectively coded as follows:

XðpÞ
ij ¼

0; if the individual0s genotype is M2M2; which indicates that
one of two M2

0s came from father; or M1M2 with M1

coming from mother

0:5; if the individual0s genotype isM1M2; but it is not sure
which allele came from father ði:e: the M1M2 founders;
or the M1M2 nonfounders with both parents being
heterozygousÞ

1; if the individual0s genotype isM1M1; or M1M2 with M1

coming from father

;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
and

XðmÞ
ij ¼

0; if the individual0s genotype is M2M2; which
indicates that one of two M2

0s came from
mother; orM1M2 with M1 coming from father

0:5; if the individual0s genotype is M1M2; but it is not
sure which allele came from mother
ði:e: the M1M2 founders; or the M1M2 nonfounders
with both parents being heterozygousÞ

1; if the individual0s genotype is M1M1; or M1M2

with M1 coming from mother

:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
We call Xij

pð Þ and Xij
mð Þ the paternal allele score and the

maternal allele score, respectively. So, we use the
following logistic regression to model the association
between the disease status Yij and the allele scores Xij

pð Þ

and Xij
mð Þ:

log
P Y ij ¼ 1
� �

1−P Y ij ¼ 1
� � ¼ β0 þ βpX

pð Þ
ij þ βmX

mð Þ
ij ;

where β0 is the intercept, and βp and βm are the regres-
sion coefficients; βp is used to describe the effect of allele
M1 coming from his (her) father, and βm measures the
effect of allele M1 whose parental origin is his (her)
mother. The null hypothesis H0 : βp = βm = 0 denotes no
association and no imprinting; βp = βm ≠ 0 indicates that
the association exists while there are no imprinting
effects, and the logistic regression model can be reduced
to the model of GDT-ME (Equation (1)); βp ≠ βm repre-
sents that both association and imprinting effects exist.
As such,

P Y ij ¼ 1
� � ¼ exp β0 þ βpX

pð Þ
ij þ βmX

mð Þ
ij

� �
1þ exp β0 þ βpX

pð Þ
ij þ βmX

mð Þ
ij

� � :
Note that the disease statuses of all the family

members in each pedigree are uncorrelated, conditional
on their own genotypes at the marker locus. Then, the
likelihood that the first Ai individuals are affected, condi-
tional on the fact that there are Ai affected individuals in
total in the ith pedigree, is (the detailed derivation refers
to Additional file 1: Appendix):
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sl
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Ui
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PNi
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ik
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βp þ X mð Þ

ij −X mð Þ
ik

� �
βm

h in o ;

where sl’s are all the possible combination that Ai out of
Ni individuals are affected by shuffling the affection
statuses of all the Ni individuals in the ith pedigree; sl is
the lth possible combination; Ui =Ni − Ai is the number
of unaffected individuals in the ith pedigree. As such, the
log-likelihood function for the ith pedigree is

li ¼ 1
Ui

XAi

j¼1

XNi

k¼Aiþ1

X pð Þ
ij −X pð Þ

ik

� �
βp þ X mð Þ

ij −X mð Þ
ik

� �
βm

h i

− log
X
sl

exp
1
Ui

X
jϵsl

XNi

k¼Aiþ1

X pð Þ
ij −X pð Þ

ik

� �
βp þ X mð Þ

ij −X mð Þ
ik

� �
βm

h i0@ 1A:

Under the null hypothesis of no association (H0 :
βp = βm = 0), the score test statistic for testing for
association incorporating imprinting effects is formulated
as follows (the details see Additional file 1: Appendix),

GDTI ¼
Xn
i¼1

Di1

Xn
i¼1

Di2

 !
∙

Xn
i¼1

Ii11
Xn
i¼1

Ii12Xn
i¼1

Ii21
Xn
i¼1

Ii22

0BBB@
1CCCA

−1

∙
Pn

i¼1Di1Pn
i¼1Di2

!
;

 
ð3Þ

where
Pn

i¼1Di1 and
Pn

i¼1Di2 are the scores of βp and βm,
respectively; Xn

i¼1
Ii11
Xn

i¼1
Ii12Xn

i¼1
Ii21
Xn

i¼1
Ii22

!
is the observed Fisher’s informa-

tion matrix of βp and βm;

Di1 ¼ 1
Ni

XAi

j¼1

XNi

k¼Aiþ1

X pð Þ
ij −X pð Þ

ik

� �
; Di2 ¼ 1

Ni

XAi

j¼1

XNi

k¼Aiþ1

X mð Þ
ij −X mð Þ

ik

� �
;
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:

GDTI asymptotically follows a chi-square distribution
with the degrees of freedom being 2, under the null
hypothesis of no association and no imprinting. It is
noted from the above that the scores Di1 and Di2evaluate
the differences in paternal allele scores and maternal al-
lele scores, respectively, for all discordant relative pairs
in a pedigree, thus utilizing information beyond first-
degree relative pairs. This is in contrast to other associ-
ation testing methods under imprinting (e.g. PDTI),
where extended pedigrees are considered as multiple nu-
clear families, and so information is not fully utilized.

MCGDTI and MCGDT-ME for incomplete pedigree data
When the genotypes of some individuals in a pedigree
are missing, GDTI cannot be used directly. Therefore, in
presence of missingness, we extend GDTI and propose
MCGDTI based on a MC sampling and estimation
process, which may recapture most information on
missing genotypes based on the observed genotypes.
Specifically, we replace Di1, Di2, Ii11, Ii12, Ii21 and Ii22 in
GDTI by their conditional expectations, Di1MC, Di2MC,
Ii11MC, Ii12MC, Ii21MC and Ii22MC, given the observed ge-
notypes, Go, where TMC = E(T(Gm,Go, A)|Go) for some
statistic T, Gm is the set of missing genotypes; A is the
collection of the observed phenotypes (disease affection
statuses); T(Gm,Go, A) is the expanded notation of T to
explicitly show its dependences on the missing geno-
types Gm, the observed genotypes Go and the observed
phenotype collection A. Following Zhou et al. [18] and
Ding et al. [19], we estimate Di1MC, Di2MC, Ii11MC, Ii12MC,
Ii21MC and Ii22MC based on a MC simulation scheme.
Specifically, if we set the MC size to be K, then we draw
independent sample Gmk, k = 1, 2,…, K, from P(Gm|Go),
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which can be accomplished efficiently based on the peel-
ing algorithm using the SLINK software [21]. The statis-
tic Di1MC can be estimated by

Dbi1MC ¼ 1
K

PK
k¼1Di1 Gmk ;Go ;Að Þ . Di2MC, Ii11MC, Ii12MC,

Ii21MC and Ii22MC can be similarly estimated by Dbi2MC ,

Ibi11MC , Ibi12MC , Ibi21MC and I i22MC , respectively. Then, the
MCGDTI statistic is calculated after replacing Di1, Di2,
Ii11, Ii12, Ii21 and Ii22 in Equation (3) by the correspond-

ing Dbi1MC , Dbi2MC , Ibi11MC , Ibi12MC , Ibi21MC and Ibi22MC values,
respectively. MCGDTI has an asymptotic chi-square dis-
tribution with the degrees of freedom being 2 under the
null hypothesis.
Earlier studies showed that the transmission disequi-

librium test can be employed for association analysis
even when there are imprinting effects [16], and we find
out that GDT-ME can also be used for such a purpose
(see simulation studies later). In this connection, for in-
complete pedigree data, we extend GDT-ME without
considering imprinting effects and propose MCGDT-ME
to test for association based on the MC sampling and es-
timation scheme. Being similar to MCGDTI, the
MCGDT-ME statistic can be calculated, as before, but

substituting each Si in Equation (2) by SiMC ¼ 1
K

PK
k¼1Si

Gmk ;Go;Að Þ, i.e. MCGDT-ME¼Pn
i¼1SiMC=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1S

2
iMC

q
.

MCGDT-ME follows a standard normal distribution ap-
proximately under the null hypothesis of no association.

Simulation settings
In this section, to explore the performance of the
proposed GDTI, MCGDTI and MCGDT-ME statistics
and compare the powers of GDTI, MCGDTI and
MCGDT-ME with the existing MCPDTI, GDT-ME and
GDT, we conduct the following simulation studies. We
consider a homogeneous population. The marker locus
and the disease susceptibility locus are in complete
linkage. Three groups of haplotype frequencies for
haplotypes DM1, dM1, DM2 and dM2 are considered to
simulate the powers: LD1: {0.13, 0.02, 0.12, 0.73}, LD2:
{0.23, 0.12, 0.02, 0.63} and LD3: {0.22, 0.03, 0.03, 0.72},
where the frequency PM1 of marker allele M1 for each
group is 0.15, 0.35 and 0.25 with the frequency PD of the
disease allele D being fixed at 0.25, and the correspond-
ing LD values are 0.092,5, 0.142,5 and 0.157,5, respect-
ively. To investigate the empirical type I error rates
under the null hypothesis of no association, the frequen-
cies of four haplotypes are taken as the product of two
allele frequencies on each haplotype, respectively. For
example, when PM1 ¼ 0:15 , the frequency of haplotype
DM1 is P(DM1)= 0.15×0.25 = 0.037,5.
Three sets of two homozygote penetrances f2 and f0

for genotypes D/D and d/d, {0.390, 0.260}, {0.440, 0.240}

and {0.480, 0.220}, are investigated with the correspond-
ing relative risk (RR=f2/f0) being 1.500, 1.833 and 2.182,
respectively, which are similar to those in Ding et al.
[19]. For each set of homozygote penetrances, three
imprinting effect models by setting the various values of
f10 and f01 are considered: no, incomplete and complete
imprinting effect models. For no imprinting effect
model, we set f1 = f10 = f01 = (f2 + f0)/2. Note that no
association implies no imprinting effects. So, we simu-
late the type I error rates of the proposed test statistics
only under no association and no imprinting. Tables 1
and 2 give the simulation settings for studying the em-
pirical size and the test power, respectively.
In addition, three types of pedigree structure are con-

sidered in our simulation study. The pedigree structures
are shown in Fig. 1: (a) two-generation family with 5
individuals, (b) three-generation pedigree with 10
individuals, and (c) four-generation pedigree with 12
individuals. In each replicate, we simulate 30 (50) pedi-
grees under each pedigree structure and the resulting
total sample size is 90 (150). Here the ascertainment
scheme for a pedigree to be included is that there is at
least one affected nonfounder in the pedigree. For
MCGDTI, MCGDT-ME and MCPDTI, 50 MC samples
of missing genotypes are generated for each replicate
with use of the SLINK software [21]. In the MC sam-
pling process, both the true marker allele frequencies
and those estimated from the genotyped founders in
each replicate are used.
For assessing the performance of the proposed tests

(GDTI, MCGDTI and MCGDT-ME) and for comparing
with the existing GDT-ME and GDT without consider-
ing imprinting effects [15], and MCPDTI with incorpor-
ating imprinting [17], we consider the following 9 tests.
GDTI is based on complete data assuming no missing
genotypes. The other 8 tests are for incomplete data,
after the removal of the genotypes of individual 1 in two-
generation families, individuals 1, 4 and 5 in three-
generation pedigrees and individuals 1 and 3 in four-
generation pedigrees. MCGDTIT, MCGDT-MET and

Table 1 Simulation settings for estimating size

Setting PM1 f2 f1 f0 RR

1 0.15 0.390 0.325 0.260 1.500

2 0.15 0.440 0.340 0.240 1.833

3 0.15 0.480 0.350 0.220 2.182

4 0.35 0.390 0.325 0.260 1.500

5 0.35 0.440 0.340 0.240 1.833

6 0.35 0.480 0.350 0.220 2.182

7 0.25 0.390 0.325 0.260 1.500

8 0.25 0.440 0.340 0.240 1.833

9 0.25 0.480 0.350 0.220 2.182
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MCPDTIT are on the basis of the true marker allele fre-
quencies, while MCGDTIE, MCGDT-MEE and MCPDTIE
are based on the estimated marker allele frequencies.
GDT-ME and GDT are also considered for incomplete
data. Under each simulation setting, 10,000 replicates are
simulated and the significance level is set at 1%. All the
simulations are implemented by using the R software
(version 3.4.1) [22].

Results
Size and power
Under 9 simulation settings given in Table 1, the empirical
type I error rates of GDTI, MCGDTIT, MCGDTIE,
MCGDT-MET, MCGDT-MEE, GDT-ME, GDT, MCPDTIT
and MCPDTIE are demonstrated in Table 3, based on 90
and 150 pedigrees at the 1% significance level, respectively.
It is shown in Table 3 that the size of all the methods is
generally close to the nominal level 1% under the null

hypothesis of no association and no imprinting, irrespect-
ive of different sample sizes. Thus, our proposed GDTI,
MCGDTIT, MCGDTIE, MCGDT-MET and MCGDT-MEE
test statistics are valid for testing association.
Figures 2, 3 and 4 give the simulated powers of GDTI,

MCGDTIT, MCGDTIE, MCGDT-MET, MCGDT-MEE,
GDT-ME, GDT, MCPDTIT and MCPDTIE based on 150
pedigrees at the 1% significance level under complete,
incomplete and no imprinting effect models for different
LD and RR values, respectively. The first 5 statistics are
proposed tests, while the remaining four are existing
tests. Additional file 1: Figures S1 - S3 show the corre-
sponding simulated powers of all the methods based on
90 pedigrees. From the figures, we find that the powers
of MCGDTI, MCGDT-ME and MCPDTI based on the
true marker allele frequencies are very close to those
based on the estimated marker allele frequencies
(MCGDTIT vs MCGDTIE, MCGDT-MET vs MCGDT-
MEE, and MCPDTIT vs MCPDTIE), respectively.
MCGDTIT and MCGDTIE can recapture much of the
missing information, which are a little less powerful than
GDTI for complete pedigree data. The existing MCPDTI
test performs the worst even though it is constructed for
testing association when imprinting effects are taken
into consideration. On the other hand, MCGDT-ME,
GDT-ME and GDT, though without accounting for im-
printing, can be used for testing association even when
imprinting effects exist. Moreover, they outperform
MCPDTI substantially. It is probably due to the fact that
MCGDT-ME, GDT-ME and GDT consider genotype
differences between all discordant relative pairs, thus
utilizing much more information than first-degree rela-
tive pairs used by MCPDTI. In Fig. 2 under complete
imprinting effect model, when the LD and RR values are
fixed, the proposed GDTI (assuming the data are
complete) and MCGDTI statistics have higher powers
than all the other test statistics. GDT (based on the IBD
information) has better performance than GDT-ME,
which is the result similar to that in Chen et al. [15].

Table 2 Simulation settings for estimating power

A Haplotype frequencies

LD setting DM1 dM1 DM2 dM2 LD

LD1 0.130 0.020 0.120 0.730 0.0925

LD2 0.230 0.120 0.020 0.630 0.1425

LD3 0.220 0.030 0.030 0.720 0.1575

B Penetrances and imprinting effect models

Imprinting effect model f2 f10 f01 f0 RR

No 0.390 0.325 0.325 0.260 1.500

0.440 0.340 0.340 0.240 1.833

0.480 0.350 0.350 0.220 2.182

Incomplete 0.390 0.370 0.280 0.260 1.500

0.440 0.420 0.260 0.240 1.833

0.480 0.460 0.240 0.220 2.182

Complete 0.390 0.390 0.260 0.260 1.500

0.440 0.440 0.240 0.240 1.833

0.480 0.480 0.220 0.220 2.182

a b c

Fig. 1 Pedigree structures for the simulation studies. a Two-generation family. b Three-generation pedigree. c Four-generation pedigree. Genotypes
of individual 1 in two-generation family, individuals 1, 4 and 5 in three-generation pedigree and individuals 1 and 3 in four-generation pedigree are
assumed to be missing for the analysis based on incomplete data
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When the LD value changes from 0.092,5 to 0.157,5 and
RR is unchanged, or the LD value is fixed and RR in-
creases from 1.500 to 2.182, all the powers become
larger and larger. The results in Fig. 3 under incomplete
imprinting effect model are similar to those in Fig. 2.
Figure 4 shows the performance of various tests under
the no imprinting effect model. The proposed MCGDT-
ME outperforms all the existing methods. MCGDTI is a
bit less powerful than MCGDT-ME, as expected, and it
has a similar performance to GDT-ME and GDT. By
comparing the results in Figs. 2, 3 and 4, we find that
when the imprinting effect model changes from
complete model to incomplete one (i.e. the degree of im-
printing effects decreases), the powers of the GDTI and
MCGDTI are smaller and smaller. GDTI and MCGDTI
attain the least powers under the no imprinting effect
model. Finally, the powers of all the methods based on
150 pedigrees are higher than those based on 90
pedigrees (Fig. 2 vs Additional file 1: Figure S1, Fig. 3 vs
Additional file 1: Figure S2, and Fig. 4 vs Additional file 1:
Figure S3), respectively.

Application to RA data
We apply our proposed methods to the RA dataset from
North American Rheumatoid Arthritis Consortium [20],

which is made available from Genetic Analysis Work-
shop 15 [23]. It has been approved by the providers of
the RA data. In this dataset, a total of 757 pedigrees and
8017 individuals were collected, and 5407 autosomal
single nucleotide polymorphisms (SNPs) were used. It
should be noted that the genotypes of about 80% indi-
viduals are missing at these SNPs and thus the proposed
MCGDTI (not GDTI) and MCGDT-ME methods are
applied. To compare the performance of the proposed
tests with the existing methods, we also implement the
GDT-ME, GDT and MCPDTI methods in this real data
analysis. On the other hand, note that there are 73
pedigree members with unknown affection statuses in
this dataset. In addition, we use the existing Monte
Carlo pedigree parental-asymmetry test (MCPPAT) to
test if imprinting is present [18].
We use the following quality control rules to filter the

data. First, a pedigree to be included has at least one
affected nonfounder. Second, we delete pedigrees with
stepfamilies. Finally, if the proportion of the individuals
with missing genotypes among all the members in a
pedigree is more than 50% based on the first SNP on
Chromosome 1, then we exclude this pedigree. This can
avoid the large variability on estimation created by pedi-
grees with high proportions of missingness. To this end,

Table 3 Empirical size (in percentage (%)) of GDTI, MCGDTI, MCGDT-ME, GDT-ME, GDT and MCPDTIa

Setting Complete data Incomplete data

GDTI MCGDTIT MCGDTIE MCGDT-MET MCGDT-MEE GDT-ME GDT MCPDTIT MCPDTIE

Based on 90 pedigrees

1 0.98 1.04 1.10 0.95 0.99 0.82 0.85 0.80 0.84

2 1.14 1.12 1.14 1.12 1.06 0.82 0.87 0.66 0.74

3 0.99 1.05 0.99 0.91 0.94 0.80 0.87 0.81 0.86

4 0.85 0.97 1.05 0.98 0.91 0.74 0.90 0.91 0.91

5 0.96 1.11 1.11 0.96 0.88 0.87 1.03 0.73 0.81

6 1.11 1.13 1.14 0.84 0.81 0.98 1.05 0.90 0.89

7 1.13 0.85 0.96 0.96 0.88 0.70 0.82 0.94 1.05

8 1.09 1.11 1.13 0.86 0.86 0.72 0.76 0.83 0.86

9 1.11 1.14 1.13 1.05 1.12 0.82 0.89 1.04 1.00

Based on 150 pedigrees

1 1.00 0.93 0.94 0.94 0.93 0.93 0.95 0.90 0.98

2 1.10 1.05 1.04 0.98 0.98 0.98 1.09 0.88 0.93

3 1.05 1.09 1.10 0.97 0.99 1.04 1.04 0.89 0.92

4 0.97 0.95 0.96 0.81 0.83 0.87 0.89 0.99 1.13

5 1.13 1.19 1.17 1.01 0.93 0.90 1.05 0.92 0.93

6 1.15 1.15 1.14 0.98 0.95 0.82 0.83 0.98 1.07

7 1.06 0.98 1.02 1.05 1.04 0.85 0.86 1.02 1.03

8 0.97 0.93 0.93 0.95 0.99 0.76 0.92 0.95 0.96

9 1.07 1.02 1.01 0.86 0.85 0.93 1.09 1.05 1.03
aThe simulations are conducted under the null hypothesis of no association and no imprinting based on 10,000 replicates for 90 and 150 pedigrees at 1%
significance level, respectively
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we get 246 pedigrees with 1109 individuals. Among
them, there are 11 individuals with the affection statuses
being unavailable and we treat them as unaffected. We
use all the available individuals (1992 individuals) in this
dataset to estimate the marker allele frequencies, not
just using the available founders, due to the large
proportion of the individuals with missing genotypes in
this dataset. Then, we calculate the values and the corre-
sponding p-values of all the test statistics based on the
estimated allele frequencies and 246 selected pedigrees.
The significance level is fixed at α= 5%, and Bonferroni
correction would test each individual hypothesis at the
significance level of α′= 0.05/5407 = 9.247,3 × 10−6,
based on 5407 SNPs. The MC size for MCGDTI,
MCGDT-ME, MCPDTI and MCPPAT is set to be 50.
The corresponding results of MCGDTI and MCGDT-

ME at the significance level of α=5%, with Bonferroni
correction based on the p-values of these methods are
shown in Table 4. From the table, MCGDTI identifies 3
SNPs statistically significantly associated with RA, which
cannot be found by MCGDT-ME. Further, the 3 SNPs

identified by MCGDTI cannot be detected by GDT-ME,
GDT and MCPDTI, and the corresponding contingency
tables are the same as Table 4, which are not shown for
brevity. The results from this real data application dem-
onstrate a gain in information through incorporating im-
printing effects (compared to MCGDT-ME), through
making use of partially genotyped pedigrees (compared
to GDT-ME and GDT), and through including the geno-
type differences between beyond first-degree relatives
(compared to MCPDTI). In addition, we list the p-values
of the association tests MCGDTI, MCGDT-ME, GDT-
ME, GDT, MCPDTI and the imprinting test MCPPAT at
these 3 SNPs in Additional file 1: Table S1. From the p-
values of MCPPAT in this table, there are statistically
significant imprinting effects at the 3 SNPs on RA,
which may be why MCGDTI is more powerful than the
other test statistics.

Discussion
In this article, based on a novel decomposition of the
genotype score of an individual according to the paternal
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Fig. 2 Simulated powers of all the test statistics. The test statistics are T1: GDTI, T2: MCGDTIT, T3: MCGDTIE, T4: MCGDT-MET, T5: MCGDT-MEE, T6:
GDT-ME, T7: GDT, T8: MCPDTIT and T9: MCPDTIE. The simulations are conducted under complete imprinting effect model at 1% significance level
based on 10,000 replicates for 150 pedigrees when LD = 0.092,5, 0.142,5, and 0.157,5, and RR = 1.500, 1.833 and 2.182, respectively. The first 5
statistics are proposed tests, while the remaining 4 are existing tests. a LD = 0.092,5 and RR = 1.500; b LD = 0.142,5 and RR = 1.500; c LD = 0.157,5 and
RR = 1.500; d LD = 0.092,5 and RR = 1.833; e LD = 0.142,5 and RR = 1.833; f LD = 0.157,5 and RR = 1.833; g LD= 0.092,5 and RR = 2.182; h LD = 0.142,5
and RR = 2.182; i LD = 0.157,5 and RR = 2.182
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or maternal source of an allele, we develop the GDTI
test to test for association incorporating imprinting for
complete pedigrees without missing genotypes. Then,
using a MC sampling and estimation scheme, we extend
GDTI and GDT-ME, and respectively develop MCGDTI
and MCGDT-ME to deal with incomplete pedigrees, in
which some individuals’ genotypes are unavailable. Com-
pared to PDTI and MCPDTI, GDTI and MCGDTI make
use of the genotype differences between all discordant
relative pairs, including beyond first-degree relatives.
Simulation results indicate that GDTI, MCGDTI and
MCGDT-ME control the size well under the null
hypothesis of no association and no imprinting. As for
the simulated powers, under complete and incomplete
imprinting effect models, our proposed GDTI and
MCGDTI methods by considering the information on
imprinting effects and all discordant relative pairs out-
perform all the existing test statistics and MCGDTI can
recapture much of the missing information. The applica-
tion to the RA dataset also demonstrates the advantage
of MCGDTI over other methods. Further, in this article,

we demonstrate that, the existing GDT-ME and the
proposed MCGDT-ME, although not constructed under
imprinting, can be used for testing association even
when the effects exist. Moreover, we propose the
MCGDT-ME test to handle incomplete pedigree data
with missing genotypes, and the test is found to perform
better than GDT-ME in simulation studies.
One of the major reasons for using within-family tests

(e.g. GDT-ME and GDT) for association is their
robustness to PS. On the other hand, note that
MCGDTI, MCGDT-ME and MCPDTI need the MC
sampling and estimation scheme to infer missing geno-
types in pedigrees, which requires these pedigrees from
a homogenous population. To investigate the perform-
ance of the proposed test statistics in the presence of PS,
we consider a population consisting of two subpopula-
tions and conduct the following simulation study. The
parameters are set to be the same as those in Chen et al.
[15]. Specifically, suppose that a disease susceptibility
locus and a marker locus are in complete linkage but in
linkage equilibrium and both allele frequencies PD and
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Fig. 3 Simulated powers of all the test statistics. The test statistics are T1: GDTI, T2: MCGDTIT, T3: MCGDTIE, T4: MCGDT-MET, T5: MCGDT-MEE, T6:
GDT-ME, T7: GDT, T8: MCPDTIT and T9: MCPDTIE. The simulations are conducted under incomplete imprinting effect model at 1% significance level
based on 10,000 replicates for 150 pedigrees when LD = 0.092,5, 0.142,5, and 0.157,5, and RR = 1.500, 1.833 and 2.182, respectively. The first 5
statistics are proposed tests, while the remaining 4 are existing tests. a LD = 0.092,5 and RR = 1.500; b LD = 0.142,5 and RR = 1.500; c LD = 0.157,5 and
RR = 1.500; d LD = 0.092,5 and RR = 1.833; e LD = 0.142,5 and RR = 1.833; f LD = 0.157,5 and RR = 1.833; g LD = 0.092,5 and RR = 2.182; h LD = 0.142,5
and RR = 2.182; i LD = 0.157,5 and RR = 2.182
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PM1 are taken to be 0.1 (0.5) in the first (second)
subpopulation. The penetrances f2, f10, f01 and f0 of geno-
types D/D, D/d, d/D and d/d are assumed to be 0.45,
0.30, 0.30 and 0.20 in both subpopulations, respectively.
In MCGDTI, MCGDT-ME and MCPDTI, the allele fre-
quency PM1 is estimated by genotyped founders from all
the collected pedigrees, by assuming that they came
from a single population, which may cause biases in the
estimation of PM1 . Two simulation scenarios of pedigree
structure or level of genotypic missingness are considered.
In the first scenario, 150 pedigrees (50 two-generation
families, 50 three-generation pedigrees and 50 four-

generation pedigrees with the pedigree structures listed in
Fig. 1) are sampled from each subpopulation and the only
difference between two subpopulations is allele frequen-
cies PD and PM1 . In the second scenario, 200 pedigrees
(100 two-generation families and 100 three-generation
pedigrees with the pedigree structures listed in Fig. 1) are
simulated from the first subpopulation and 100 four-
generation pedigrees with the pedigree structure listed in
Fig. 1 are generated from the second subpopulation,
where these two subpopulations are very different from
each other in pedigree structure and level of
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Fig. 4 Simulated powers of all the test statistics. The test statistics are T1: GDTI, T2: MCGDTIT, T3: MCGDTIE, T4: MCGDT-MET, T5: MCGDT-MEE, T6:
GDT-ME, T7: GDT, T8: MCPDTIT and T9: MCPDTIE. The simulations are conducted under no imprinting effect model at 1% significance level based
on 10,000 replicates for 150 pedigrees when LD = 0.092,5, 0.142,5, and 0.157,5, and RR = 1.500, 1.833 and 2.182, respectively. The first 5 statistics
are proposed tests, while the remaining 4 are existing tests. a LD = 0.092,5 and RR = 1.500; b LD = 0.142,5 and RR = 1.500; c LD = 0.157,5 and RR = 1.500;
d LD = 0.092,5 and RR = 1.833; e LD = 0.142,5 and RR = 1.833; f LD = 0.157,5 and RR = 1.833; g LD = 0.092,5 and RR = 2.182; h LD = 0.142,5 and RR = 2.182;
i LD = 0.157,5 and RR = 2.182

Table 4 Contingency table showing MCGDTI and MCGDT-ME
results of application to RA data at α’ = 9.247,3 × 10−6a

PMCGDT-ME < α’ PMCGDT-ME ≥ α’ Total

PMCGDTI < α’ 0 3 3

PMCGDTI ≥ α’ 0 5404 5404

Total 0 5407 5407
aPtest denotes the p-value of the test

Table 5 Empirical size (in percentage (%)) of GDTI, MCGDTI,
MCGDT-ME, GDT-ME, GDT and MCPDTI in the presence of
population stratificationa

Scenario Complete data Incomplete data

GDTI MCGDTI MCGDT-ME GDT-ME GDT MCPDTI

1 1.14 1.16 1.04 1.14 1.16 1.69

2 1.07 1.01 0.97 1.03 1.09 1.24
aThe simulations are conducted under the null hypothesis of no association
and no imprinting based on 10,000 replicates at 1% significance level
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genotypic missingness. Then, the resulting total sam-
ple size of pedigrees is 300 for each simulation sce-
nario. Other simulation settings are the same as those
in the Simulation settings subsection. The simulated
size results of GDTI, MCGDTI, MCGDT-ME, GDT-
ME, GDT and MCPDTI are shown in Table 5. From
the table, we find that all the proposed test statistics
control the size well under the PS models, while the
size of the existing MCPDTI test is a little inflated.
Just like the genotypes of some members in the col-

lected pedigrees may be missing, it is also common in
practice that the affection statuses of some individuals in
the pedigrees may be unavailable. As mentioned in the
real data application subsection, one way to deal with
these individuals is to treat them as unaffected. To in-
vestigate if this influences the validity of the proposed
test statistics, we conduct a few simulation studies. The
simulation results show that the proposed methods are
still valid to test for association by handling the missing
affection status in this way (data not shown). However,
this may impact their test powers under alternative hy-
potheses and we will carry out some simulation studies
to check it in our future work.
Like other methods, our proposed GDTI and MCGDTI

have their own limitations. In this article, we only consider
using an empirical moment estimate based on large sam-
ple theory to estimate the variances of the numerators of
GDTI and MCGDTI, while we do not propose the corre-
sponding tests based on the variance estimates from the
IBD information. This is because even though the IBD
information between two alleles for the pair of allele

scores (X pð Þ
ij , X pð Þ

ik ), (X pð Þ
ij , X mð Þ

ik ), (X mð Þ
ij , X pð Þ

ik ) or (X mð Þ
ij , X mð Þ

ik )

of the jth and kth individuals in the ith pedigree is obtained,
two allele scores in this pair may be different from each
other for GDTI and MCGDTI and thus we cannot
estimate the corresponding variance based on the IBD in-
formation, which is different from GDT (the details refer
to Appendix B in Chen et al. [15]). For example, we con-
sider a two-generation family in which the genotypes of
the unaffected parents and the affected child are M1M2,
M1M2 and M1M1, respectively. Then, when we compare
the allele scores of the unaffected father and the affected
child, the allele scores of the father and the child are re-

spectively X pð Þ
F ¼ X mð Þ

F ¼ 0.5 and X pð Þ
C ¼ X mð Þ

C ¼ 1, which
are different from each other. Fortunately, from our simu-
lation study, MCGDTI for incomplete pedigrees even has
the similar power to GDT under the no imprinting effect
model, and is more powerful than GDT under the im-
printing effect models.
We should mention that, because of utilizing the

genotype differences between all discordant relative
pairs, the requirement for a pedigree to be included
is that this pedigree should have at least one affected

and one unaffected individuals. In addition, GDTI
and MCGDTI do not take account of the covariates
in analysis, which may cause the dependences be-
tween individuals within a family, even though under
the null hypothesis of no association. This may be
handled from the quasi-likelihood for a conditional
logistic regression model [15, 24, 25]. So, our future
work is to incorporate the covariates into GDTI and
MCGDTI.

Conclusions
Under complete and incomplete imprinting effect
models, our proposed GDTI and MCGDTI methods, by
considering the information on imprinting effects and all
discordant relative pairs within each pedigree, outper-
form all the existing test statistics and MCGDTI can
recapture much of the missing information. Therefore,
MCGDTI is recommended in practice.

Additional files

Additional file 1: Appendix. Construction of the GDTI test statistic.
Table S1. P-values of the test statistics applied to RA data at 3 SNPs with
PMCGDTI< 9.247,3 × 10−6. Figures S1 - S3. Simulated powers of all the test
statistics. The test statistics are T1: GDTI, T2: MCGDTIT, T3: MCGDTIE, T4:
MCGDT-MET, T5: MCGDT-MEE, T6: GDT-ME, T7: GDT, T8: MCPDTIT and T9:
MCPDTIE. The simulations are conducted under complete, incomplete
and no imprinting effect models at 1% significance level based on 10,000
replicates for 90 pedigrees when LD = 0.092,5, 0.142,5, and 0.157,5, and
RR = 1.500, 1.833 and 2.182, respectively. The first 5 statistics are proposed
tests, while the remaining 4 are existing tests. (PDF 76 kb)
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