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Abstract

Background: Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide
polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign
weights, the gold standard is to use external weights from an independent study. However, appropriate external
weights are not always available. In such situations and in the presence of predominant marginal genetic effects,
we have shown in a previous study that GRS with internal weights from marginal genetic effects (“GRS-marginal-
internal”) are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However,
this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect
stronger than the marginal genetic effect.

Methods: In this paper, we present a weighting approach for such predominant interactions (“GRS-interaction-
training”) in which parts of the data are used to estimate the weights from the interaction terms and the remaining
data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in
which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to
the GRS-marginal-internal approach and to GRS with external weights.

Results: Our simulation study showed that in the absence of external weights and with predominant interaction
effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were
predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect
interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by
GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data
application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations).

Conclusion: When appropriate external weights are unavailable, we recommend to use internal weights from the
study population itself to construct weighted GRS for GxE interaction studies. If the SNPs were chosen because a
strong marginal genetic effect was hypothesized, GRS-marginal-internal should be used. If the SNPs were chosen
because of their collective impact on the biological mechanisms mediating the environmental effect (hypothesis of
predominant interactions) GRS-interaction-training should be applied.
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Type I error
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Background
For many diseases, genetic influences are exceedingly
complex and cannot be explained by simple Mendelian
modes of inheritance only. Moreover, genetic and envir-
onmental factors may jointly contribute to susceptibility
clarifying the importance of analyzing gene-environment
(GxE) interactions, which can be defined as “a different
effect of environmental exposure in disease risk in per-
sons with different genotypes” [1].
Since most complex diseases are influenced by hun-

dreds of genetic variants each having a small effect on
its own, polygenic approaches that deal with the genetic
basis en masse often access more of the heritable com-
ponent of complex traits than is possible by single-
variant approaches [2]. The most common polygenic
approach is the weighted genetic risk score (GRS) ap-
proach in which a weighted GRS is calculated from a
pre-selected number of genetic variants to define a per-
son’s individual genetic risk for disease development [3].
One of the first GRS applications was published by

Purcell et al. who used GRS to argue that schizophrenia
has a polygenic risk [4]. Although their genome-wide as-
sociation study (GWAS) identified few individually sig-
nificant single nucleotide polymorphisms (SNPs), they
provided evidence for a substantial polygenic component
to risk of schizophrenia involving thousands of common
alleles of very small effect. In addition, GRS show prom-
ise for patient stratification and subphenotyping [2].
Hamshere et al. showed that among bipolar disorder
cases GRS for schizophrenia risk could distinguish
schizo-affective cases from others [5]. Moreover, GRS
were successfully used in interaction analyses to examine
the genetic susceptibility to air pollution-induced type 2
diabetes [6], air pollution-induced airway inflammation
[7] and fried food-induced obesity [8].
The high power of GRS approaches to detect GxE inter-

actions has been confirmed in a recent methodological
paper by Aschard [9]. In this publication, Aschard showed
that if most interaction effects point into the same direc-
tion, the use of GRS increases the power to detect GxE in-
teractions in comparison to the common univariate
single-variant approaches, e.g. with Bonferroni correction,
and the joint test of main genetic and interaction effects
[9, 10]. Furthermore, by combining SNPs of a certain bio-
logical pathway, GRS can be used as a simple statistical
approach for the complex biological pathways through
which environment-induced diseases might be caused [7].
GRS have been employed to summarize genetic ef-

fects among an ensemble of markers that do not indi-
vidually achieve significance and to estimate the
variance explained by a marker panel [3]. In these ap-
plications, the gold standard is to use external
weights, e.g. marginal genetic effects estimated in an
independent study population [3, 11].

In a recent publication, we presented a new GRS ap-
proach that can be applied if no appropriate external
weights are available and the marginal genetic effects are
predominant, which means that the marginal genetic ef-
fects are stronger than the interaction effects [12]. In
this approach, we used GRS with internal weights from
the marginal genetic effects of the study itself and
showed that using these GRS increased the power to de-
tect gene-environment interactions substantially com-
pared to the common single SNPs approach and to the
usage of unweighted GRS with a well-controlled type I
error [12]. In addition, GRS with weights from the mar-
ginal genetic effects estimated with elastic net regression
[13] were able to handle a large number of correlated
SNPs as well as noise SNPs, i.e. SNPs having no effect
on the outcome of interest. Applying this approach to
an epidemiological study, we showed in a study popu-
lation of only 402 women that genetic variation in
the endoplasmatic reticulum (ER) stress pathway
might play a role in air pollution induced inflamma-
tion in the lung [7].
However, in scenarios with predominant interaction

effects, a better approach might be to split the data into
test and training data and using the training data to esti-
mate the weights in the interaction term itself and the
remaining test data to determine the GRS. Dudbridge
(2013) evaluated a GRS approach in which the data were
split into test and training data for the detection of mar-
ginal genetic effects [3]. Dudbridge recommended that
the optimal balance of sample sizes between training
and test data sets is close to one-half regardless of the
proportion of noise SNPs or the p-value threshold [3].
Therefore, given an initial sample to be split into train-
ing and test subsets, an obvious rule of thumb is to
make an even split [3]. However, to the best of our
knowledge, this approach has never been evaluated for
the detection of GxE interactions.
The aim of the current study is to present a new GRS

approach for GxE interaction studies, called GRS-
interaction-training, in which the weights are gained
from the interaction terms in the training dataset that is
split off the sample data and the remaining test data is
used to determine the GRS. We performed a simulation
study on the detection of gene-environment interactions
in which we compared the performance of GRS-
interaction-training to GRS with external weights (gold
standard) and to weighted GRS-marginal-internal [12].
We considered scenarios with predominant marginal
genetic effects and smaller additional GxE interaction ef-
fects, and vice versa. We simulated scenarios with an in-
creasing number of noise SNPs (up to 200) and with
varying minor allele frequencies.
Moreover, we applied these different weighting ap-

proaches to a real data set from the Traffic, Asthma and
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Genetics (TAG) Study (N = 4465 observations in a
pooled dataset across six birth cohorts) concerned with
investigating the role of genetic variation of the oxidative
stress and inflammation pathway on air pollution-
induced asthma at school age.

Methods
Determination of weighted GRS
Weighted GRS (GRSi) are defined as a weighted sums of
the number of risk alleles (coded as 0, 1, 2) of k consid-
ered SNPs (gi1,…, gik) for the n subjects (i = 1,…, n):

GRSi ¼ w1 gi1 þ…þ wk gik : ð1Þ

The most common weighting approach is to use ex-
ternal weights w1, …, wk, e.g. marginal genetic effects
of the k SNPs estimated in an independent study
population [3, 11].
Genome-wide meta-analyses that provide the com-

bined effect estimates of a range of independent studies
are usually preferred, followed by meta-analyses, which
only include a selected number of SNPs identified to be
relevant for the phenotype and by GWAS in large single
cohorts. Determining weights from two or more differ-
ent external studies should be treated with caution be-
cause effect estimates from different cohorts are often
incomparable, e.g. due to differences in study design,
ethnicity or phenotype definitions.
A limitation of GRS with external weights is that we

can only include SNPs for which the marginal genetic ef-
fects have been published. In this regard, GRS with ex-
ternal weights are usually restricted to SNPs with a
genome-wide significant (p-value <5 × 10−8) marginal
genetic effect in the external study population, whereas
SNPs with a predominant interaction effect are usually
not presented. Furthermore, not for every phenotype
large-scale GWAS are published and sometimes they
have been conducted only in populations with different
ethnicity, sex or age range.

GRS-marginal-internal approach
If no appropriate external weights are available, one ap-
proach that we developed recently is to estimate the
weights w1, …, wk from the internal marginal genetic ef-
fect of the study sample itself [12], called GRS-marginal-
internal.

In this approach, the weights ( w1;…;wkÞ ¼
β̂1;…; β̂k

� �
in eq. (1) are estimated internally from a

multivariate elastic net regression analysis [13–15] for
the combined marginal genetic effect of k pathway-
related SNPs on the health outcome y in the study
population itself. In the elastic net regression model,
the values of the unknown parameters for the

intercept β0 and the marginal genetic effects of the k
SNPs βj (j = 1,…, k) can be estimated by minimizing the
sum of the residual sum of squares and a penalty term:

β̂0; β̂ ¼ argmin

β0; β

Xn

i¼1
yi−β0−

Xk

j¼1
βjGij

� �2
þ P λ; βð Þ

� �
:

ð2Þ

Here, G = (gi1,…, gik) is an n x k matrix holding the k
considered SNPs for the n subjects and the penalty func-

tion Pðλ; βÞ :¼λ
Pk

j¼1ð12 ð1−αÞ β2j þ α jβjjÞ is a combined

penalty of lasso and ridge regression penalties. We used
cross-validation to find the optimal values of the
regularization parameter λ, i.e. the largest λ –value such
that the mean squared error (minMSE) is within 1
standard error (SE) of the minimum as implemented in
the R package glmnet [14] and recommended in [15].
The penalty weight α can be chosen between 0 and 1.
The elastic net with a penalty weight of α = 1 is identical
to the lasso regression, whereas the elastic net with α = 0
is identical to the ridge regression [15]. Since we could
show in our recent publication, that the penalty weight
α only has a minor impact on power and type I error for
the detection of interactions [12], we chose a penalty
weight of α = 0.5 in this publication to receive a good
balance between ridge and lasso regression. Zou and
Hastie proposed the elastic net penalty for linear regres-
sion models [13] that was further extended to logistic re-
gression and multinomial regression [14] and to the Cox
regression [16].

GRS-interaction-training approach
In scenarios with predominant interaction effects, i.e. in
scenarios in which the GxE interaction effects are stron-
ger than the marginal genetic effects, a better approach
might be to use the coefficients from the interaction
terms to determine the weights instead of using the mar-
ginal genetic effect estimates.
In this new approach, which we call GRS-interaction-

training approach, SNPs get a larger weight to the extent
that they interact more strongly with the environmental
exposure.
Up to now, the use of training and test datasets for

the construction of GRS has only been described for
the detection of marginal genetic effects. If GRS are
used to estimate marginal genetic effects, Dudbridge
pointed out that the weights must be estimated from
the marginal genetic effects in a training sample and
be used to construct a GRS in an independent test
dataset [3]. In the same line, Burgess et al. showed
that using internal weights instead of weights from a
training dataset should be avoided because it leads to
biased effect estimates [17, 18].
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Transferring this knowledge to GxE interaction ana-
lyses with GRS with weights from the interaction term
itself, it is necessary to estimate these internal inter-
action weights in an independent training sample as
well.
In the first step of the GRS-interaction-training ap-

proach, the initial sample is split randomly into a train-
ing dataset and a test dataset. Next, the elastic net
regression is used to estimate the interaction parameters
δj (j = 1,…, k) between each of the k SNPs and the envir-
onmental factor E by minimizing the sum of the residual
sum of squares and a penalty term in the training data:

β̂0; β̂; γ̂ ; δ̂

¼ argmin

β0; β; γ; δ

Xn

i¼1
yi−β0−

Xk

j¼1
βjGij−γEi−

Xk

j¼1
δjGijEi

� �2
þ P λ; β; γ; δð Þ

� �

ð3Þ

with E = (e1,…, en) being an n x 1 matrix holding the
considered environmental exposure E for the n subjects,
the environmental effect parameter γ and the penalty
function:

Pðλ; β; γ; δÞ :¼λ ð
Xk

j¼1
ðð1
2
ð1−αÞ β2j þ α jβjjÞ

þ ð1
2
ð1−αÞ δ2j þ α jδjjÞÞ þ ð1

2
ð1−αÞ γ2 þ α jγjÞÞ:

The remaining parameters are defined as in eq. (2).

The effect estimates for the interaction terms δ̂ j

j ¼ 1;…; kð Þ are then used as weights w1, …, wk for the
GRS (see eq. (1) for the general definition of weighted
GRS) in the remaining test data.

Interaction analysis
In the subsequent gene-environment interaction ana-
lysis, a generalized linear model (GLM) [19, 20] is ap-
plied to estimate the gene-environment interaction
(GRSxE interaction; interaction between GRS and envir-
onmental exposure) for the same health outcome y as in
eqs. (2, 3). In a GLM, y is usually assumed to be gener-
ated from a distribution in the exponential family that
includes, e.g., the normal, binomial, Poisson and gamma
distribution. The mean μ of this distribution depends on
the independent variables X through:

E Yð Þ ¼ μ ¼ g−1 Xτð Þ

where E(Y) is the expected value of the random variable
Y, g is the link function and X = (grsi, ei, grsiei) being an
n x 3 matrix holding the considered GRS, the environ-
mental exposure E and the interaction between the GRS
and E for the n subjects. The unknown parameter vector
τ is estimated using maximum likelihood.

Simulation study
Simulation design
The data for the simulation study was generated using
the function simulateSNPglm from the R-package scrime
[21]. Each of the simulated datasets contains six inde-
pendent genetic risk factors (i.e. SNPs) and either 6, 50,
100, or 200 additional noise SNPs. The impact of more
noise SNPs (up to 840) and highly correlated SNPs was
discussed in our previous publication where we showed
that weighted GRS with weights estimated in the elastic
net regression can handle even a high number of noise
and correlated SNPs very well [12]. In most scenarios,
we randomly chose minor allele frequencies (MAF) be-
tween 0.01 and 0.45 for the six risk SNPs as well as for
the noise SNPs. When analyzing the impact of the MAF,
we varied the MAFs of the six risk SNPs between 0.01
and 0.45, whereas the MAFs for the noise SNPs were
randomly selected. A dominant mode of inheritance was
considered for each risk SNP.
We compared two scenarios:
In scenario (a), we constructed a predominant inter-

action effect which means that the interaction between
each of the six risk SNPs and an environmental exposure
E is set to an interaction effect of 1.5 with a smaller mar-
ginal genetic effect that is not explicitly defined (see [21]).
In scenario (b), we constructed a predominant mar-

ginal genetic effect, which means that the marginal gen-
etic effect of each of the six risk SNPs is set to 1.5 with
an additional (smaller) interaction effect. For the simula-
tion of the gene-environment interaction terms in sce-
nario (b), we followed the procedure previously
described [12].
Effect estimates and p-values for the marginal genetic

effects, the environmental effects and for the interaction
effects of a simulated example dataset of N = 3000 are
given for scenarios (a) and (b) in Tables S1 and S2 of
Additional file 1.

Simulation of external weights
In real data applications, it is often not or hardly pos-
sible to get appropriate external weights. Therefore, we
simulated different types of external data with varying
degrees of fit to the own study sample. First, external
weights were estimated from the marginal genetic effects
in an external dataset that was simulated from the same
distribution as our study sample data (perfect weights).
In addition, we simulated two scenarios with less ap-
propriate external weights. In the first scenario, the
effect estimates of the risk SNPs in our own study
sample were larger than in the external data (under-
estimating weights) and in the second scenario, only
one of the six risk SNPs of the external data was as-
sociated with the outcome in our own study sample
(overestimating weights).
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We simulated external data with the same sample size
as in our own study sample and external data with a
sample size being four times larger than in our own
study sample and varied the number of noise SNPs from
6 to 200.

Evaluation of power, proportion of sign-misspecification,
and type I error
The main focus of the model comparison was to
maximize the power to detect a gene-environment inter-
action with an acceptable type I error.
Power was evaluated in datasets with N = 3000 or N =

1000 observations and 100 or 1000 replications depend-
ing on the running time and precision needed in differ-
ent scenarios. As shown in [12], the restriction to 100
replications only caused a minor sampling error of
around 3%-points in power and type I error.
The power of the model was calculated as the propor-

tion of times a true-positive interaction was correctly
identified (sign of the parameter estimate for the GRSxE
interaction term correctly identified and p-value < 0.05)
across all replications. The type I error of the model was
calculated as the proportion of times a false-positive inter-
action was identified under the null hypothesis. We fur-
ther evaluated the proportion of sign-misspecifications,
which was calculated as the proportion of times a signifi-
cant interaction was identified, but the sign of the param-
eter estimate for the GRSxE interaction term was not
correctly determined.

Within the evaluation of our GRS-interaction-training
approach, we investigated the optimal balance between
training and test datasets by comparing different propor-
tions: We started with the scenario recommended by
Dudbridge (2013) for GRS used for the detection of mar-
ginal genetic effects [3], in which the training and the
test datasets have an even sample size (1:1). Further sce-
narios are based on smaller training datasets (1:2, 1:3,
1:4, 1:9 and 1:19) and larger training datasets (19:1, 9:1,
4:1, 3:1, 2:1) than test datasets.
All analyses were performed using R 3.3.1 [22].

Results
Simulation study
GRS-interaction-training approach – Balance between
training vs. test data
In a first step, we evaluated the optimal balance between
training and test data applying our GRS-interaction-
training approach.
In Fig. 1, power and type I error to detect GxE interac-

tions for (a) predominant interaction effects and (b) pre-
dominant marginal genetic effects are presented. Power
and type I error were evaluated with an increasing sam-
ple size of the training data in comparison to the test
data (from 19:1 to 1:19).
This figure reveals that in scenarios with many noise

SNPs, the optimal split is close to one-half and the bal-
ance is roughly symmetrical around one-half. However,
with a decreasing number of noise SNPs, a higher power

Fig. 1 Impact of the balance between training vs. test data on power and type I error of the GRS-interaction-training approach. Scenarios with
predominant interaction effects (a) and predominant marginal genetic effects (b). Balance training vs. test data increases from 19:1 to 1:19,
scenarios with 6 risk SNPs that interact with the environmental exposure and 6, 50, 100 and 200 additional noise SNPs that are not associated
with the outcome (N = 3000 observations and 1000 replications)
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was achieved by increasing the test data in comparison
to the training data. In scenarios with an equal number
of noise and risk SNPs, i.e. with six noise and six risk
SNPs, the optimal balance between training and test
data lay between 1:3 and 1:4. The type I error was well
controlled over all scenarios and there was no difference
in power and type I error between scenarios with pre-
dominant interaction effects (Fig. 1a) and scenarios with
predominant marginal genetic effects (Fig. 1b).

GRS-interaction-training in comparison to previous
weighting approaches
Next, we compared the GRS-interaction-training approach
(balance training vs. test data 1:1) to our previously

published GRS-marginal-internal approach [12] and to
GRS with external weights (which is typically considered as
gold standard) in scenarios with (a) predominant inter-
action effects and (b) predominant marginal genetic effects
with an increasing number of noise SNPs (up to 200).
In scenarios with predominant interaction effects (see

Fig. 2a), the GRS-interaction-training approach achieved a
higher power than the GRS-marginal-internal approach. In
particular, in scenarios with many noise SNPs, the GRS-
marginal-internal approach reached a very low power to
detect interaction effects. Furthermore, with more noise,
there was a high number of sign-misspecifications when
using the GRS-marginal-internal approach in scenarios
with predominant interaction effects.

Fig. 2 External vs. internal weights with increasing number of noise SNPs (up to 200) in scenarios with predominant interaction effects (a) and
predominant marginal genetic effects (b). Power, sign-misspecifications and type I error comparison of i) the GRS-interaction-training approach (red
lines; one half of the data used as training data and the other half as test data), ii) the GRS-marginal-internal approach (blue lines) and iii) GRS with ex-
ternal weights (black lines). We compared three types of external weights. Perfect: data from the same distribution as the sample data; over-
estimating: only one of the six risk SNPs of the external data was associated with the outcome in the sample data; underestimating: effect
estimates of the risk SNPs in the sample data were 30% larger than in the external data). External weights with “1:1” and “1:4”: Balance between size of
sample data vs. size of external data (N = 3000 observations and 1000 replications)
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In scenarios with predominant marginal genetic effects
(see Fig. 2b), the GRS-marginal-internal approach
achieved a slightly higher power to detect interaction ef-
fects than the GRS-interaction-training approach, but
the differences became smaller with an increasing num-
ber of noise SNPs. There were no sign-misspecifications
in scenarios with predominant marginal genetic effects.
GRS with perfect external weights that were gained

from external data that were simulated from the same
distribution as our study sample data, outperformed the
GRS-interaction-training and the GRS-marginal-internal
approaches. However, if the sample size of the external
data was not larger than our own study sample size, the
GRS-interaction-training approach achieved a higher
power than GRS with perfect external weights in scenar-
ios with predominant interaction effects (Fig. 2a).
Furthermore, in real data applications, there is usually

no perfect match between the external data and the sam-
ple data, e.g., effect estimates in the own study sample
might differ from those in the external data or only a sub-
set of risk SNPs identified in the external data is associated
with the outcome in the own study sample. In these sce-
narios, the GRS-interaction-training approach was often
more appropriate to detect predominant interaction ef-
fects than GRS with external weights. The GRS-marginal-
internal approach only outperformed GRS with external
weights in the detection of predominant marginal genetic
effects if there were <100 noise SNPs in the data (Fig. 2b).
The type I error was well controlled over all scenarios

(Fig. 2).

GRS-interaction-training vs. GRS-marginal-internal – Impact
of MAF
In a last step, we analyzed the impact of the MAFs of
the six risk SNPs on power, proportion of sign-
misspecifications and type I error of the GRS-
interaction-training approach in comparison to the
GRS-marginal-internal approach.
In scenarios with a predominant interaction effect (see

Fig. 3a), the power achieved by the GRS-interaction-
training approach was highest for MAFs between 0.05
and 0.20. Furthermore, there were no sign-
misspecifications and the type I error was well
controlled. The power achieved by the GRS-marginal-
internal approach was even higher than the power
achieved by the GRS-interaction-training approach in
scenarios with only a small number of noise SNPs and
small MAFs. However, with more noise and MAFs >0.1,
the GRS-interaction-training approach outperformed the
GRS-marginal-internal approach. Most interestingly,
there was a high number of sign-misspecifications in
scenarios with MAFs ≥0.2 when applying the GRS-
marginal-internal approach, especially in scenarios with
many noise SNPs.

In scenarios with a predominant marginal genetic ef-
fect (see Fig. 3b), the GRS-marginal-internal approach
achieved a higher power than the GRS-interaction-
training approach with an acceptable proportion of sign-
misspecifications.
The type I error was well controlled in all scenarios,

but with a higher variation due to the reduced number
of replications (100 instead of 1000).

Real data application
The real data application was based on a dataset from
the Traffic, Asthma and Genetics (TAG) Study (N =
4465 observations in the pooled dataset across six birth
cohorts) in which the interaction between air pollution
and SNPs associated with oxidative stress and inflamma-
tion on incident childhood asthma was investigated.
Traffic-related air pollution, asthma, SNPs, and poten-

tial confounder data were pooled across six birth co-
horts. Parents reported physician-diagnosed asthma
from birth to 7–8 years of age (confirmed by pediatric
allergist in two cohorts). Individual estimates of annual
average air pollution [nitrogen dioxide (NO2), particulate
matter ≤2.5 μm (PM2.5), PM2.5 absorbance, ozone] were
assigned to each child’s birth address using land use re-
gression, atmospheric modeling, and ambient monitor-
ing data. Gene-environment interactions between air
pollution and SNPs in GSTP1 (rs1138272 and rs1695)
and TNF (rs1800629) on asthma were investigated.
The main findings of the pooled analyses were that

NO2 (OR = 1.23; 95%-CI: 1.03, 1.46, for a 10-μg/m3 in-
crease in NO2) and GSTP1 rs1138272 (TT/TC vs. CC;
OR = 1.49; 95%-CI: 1.20, 1.84) were marginally associ-
ated with asthma and a significant interaction between
GSTP1 rs1138272 and NO2 on asthma was detected
(Bonferroni-corrected p = 0.012) [23].
More information about the TAG study can be found

in [23–25].
In our analysis, we focused on the German Infant

Study on the influence of Nutritional Intervention plus
environmental and genetic influences of on allergy de-
velopment (GINIplus) as study sample (N = 593 observa-
tions), which is one of the six birth cohorts included in
the TAG study. We compared the p-values derived from
weighted GRS with weights from the pooled analysis as
published in [23] (proxy for external weights) to p-
values from the GRS-marginal-internal approach and to
p-values from the GRS-interaction-training approach
(balance training vs. test data 1:1 (Ntest = 296), 1:2
(Ntest = 395) and 1:3 (Ntest = 444)).
In Table 1, an overview on the marginal genetic effects

in the pooled analysis [23] and in GINIplus are given.
Only the marginal genetic association between GSTP1
rs1138272 and asthma was significant in the pooled
TAG analysis. Effect estimates differed only slightly
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between the pooled analysis and GINIplus, being ~30%
stronger in GINIplus than in the pooled analysis. How-
ever, due to the small sample size of GINIplus (N = 593),
this marginal association was not significant in
GINIplus.
Table 2 shows the results of the GxE interaction ana-

lysis in GINIplus. The significant GxE interaction be-
tween GSTP1 rs1138272 and NO2 on asthma, which was
identified in the pooled analysis [23], was identified by
each GRS approach. The lowest p-values were achieved
by applying the GRS-marginal-internal approach and
GRS with external weights, followed by the GRS-
interaction-training (using 25% of the data for training
and the remaining 75% as test data). The weights from

the GRS-marginal-internal approach were almost identi-
cal to the univariate estimates from the pooled analysis.
The GRS-interaction-training approach was the only ap-
proach that correctly identified GSTP1 rs1138272 as the
only SNP that interacts with air pollution (cf. [23]) by
setting the weights of the other SNPs to zero.

Discussion
In this article, we presented a new weighting approach,
called GRS-interaction-training, for GRSxE interaction
studies in which parts of the study sample are used to
estimate the weights and the remaining data are
employed to determine the GRS.

Fig. 3 Power, sign-misspecifications and type I error comparison of the GRS-interaction-training approach (one half of the data used as training
data and the other half as test data) vs. the GRS-marginal-internal approach. Scenarios with predominant interaction effects (a) and predominant
marginal genetic effects (b). Minor allele frequencies of the 6 risk SNPs increase from 0.01 to 0.45, scenarios with 6, 50 and 100 noise SNPs (N =
1000 observations and 100 replications)
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In a simulation study and a subsequent real data appli-
cation, we compared the performance of this approach
to weighted GRS with internal weights from the mar-
ginal genetic effects, called GRS-marginal-internal [12],
and GRS with external weights for the detection of
gene-environment interactions.
Our simulation study has shown that the power for

detecting GxE interactions reached by applying the
GRS-interaction-training approach was only slightly
lower than the power achieved by weighted GRS with
external weights from the marginal genetic effects esti-
mated in an independent study population that fits per-
fectly to our own study sample. If the external data,
however, did not fit to the own study sample perfectly or
the sample size of the external data was not larger than
our own sample size, the power was higher when using
the GRS-interaction-training approach.
The sample size of the test data in the GRS-

interaction-training approach is only half of the sample

size from the GRS-marginal-internal approach, because
in the GRS-interaction-training approach half of the data
is used to determine the weights and the remaining test
data to calculate the GRS and to estimate the inter-
action. Nevertheless, if there were no external weights
available and the underlying GxE interaction effect was
larger than the marginal genetic effect, the highest
power was reached with the GRS-interaction-training
approach. If the underlying marginal genetic effect was
substantially larger than the GxE interaction effect, the
GRS-marginal-internal approach was more appropriate.

GRS-interaction-training approach – Balance between
training vs. test data
Motivated by the idea that the interaction itself might be
more suitable to estimate the weights than the marginal
genetic effect, we divided each of our datasets into a
training and a test dataset and used the interaction esti-
mates from the training data as weights for the GRS in
the test data. Dudbridge (2013) evaluated a similar ap-
proach for the detection of marginal genetic effects and
reported that the optimal balance of sample sizes be-
tween training and test datasets is close to one-half re-
gardless of the proportion of noise SNPs or the p-value
threshold [3]. In our study, this recommendation
showed up to be true for scenarios with many noise
SNPs (e.g., 6 risk SNPs and 200 noise SNPs) and the bal-
ance was roughly symmetrical around one-half which is
also in line with [3]. However, in contrast to Dudbridge
(2013), with a decreasing number of noise SNPs
(down to only 6), a higher power was achieved by in-
creasing the size of the test data proportionally to the
size of the training data. This finding was confirmed
in our real data application with only two noise SNPs
and one risk SNP, as a lower p-value was achieved
when using more test data than training data. Never-
theless, since we usually consider a large number of
noise SNPs in most gene-environment interaction
studies, we generally support Dudbridge’s rule of

Table 1 Real data application. Marginal genetic effects for the
associations of three GSTP1 & TNF SNPs with parents reported
physician-diagnosed asthma from birth to 7–8 years of age in
the pooled TAG data and in GINIplus considering a dominant
mode of inheritance for the three SNPs

Association with asthma

N ORa p-valueb

GSTP1 rs1138272 Pooledc 4465 1.49 <0.001

GINIplusd 593 1.67 0.348

GSTP1 rs1695 Pooledc 4635 0.91 0.430

GINIplusd 593 0.75 0.972

TNF rs1800629 Pooledc 4356 1.04 0.647

GINIplusd 593 0.80 1.000
aAdjusted for study, city, intervention, infant sex, maternal age at birth,
maternal smoking during pregnancy, environmental tobacco smoke in the
home, birth weight, and parental atopy. bp-values were corrected for multiple
testing using the Bonferroni method (raw p-values multiplied by the number
of analyzed SNPs (3)). cPooled data from BAMSE, CAPPS, GINIplus, LISAplus,
SAGE and PIAMA, N, ORs and p-values as published in MacIntyre et al. (2014).
ddetermined for this publication

Table 2 Real data application. GxE interaction analysis in GINIplus between a GRS of three GSTP1 & TNF SNPs and air pollution
exposure (NO2) with parents reported physician-diagnosed asthma from birth to 7–8 years of age

Weights for GRS GRSxE interaction

N GSTP1 rs1138272 GSTP1 rs1695 TNF rs1800629 ORa p-value

GRS with weights from pooled marginal genetic effectsb 593 ln(1.49) ≈ 0.40 ln(0.91) ≈ −0.09 ln(1.04) ≈ 0.04 16.31 0.004

GRS-marginal-internalc 593 0.69 −0.09 0.00 8.83 0.004

GRS-interaction-training (1:1)d,e 296 0.63 0.00 0.00 9.71 0.028

GRS-interaction-training (1:2)d,f 395 0.64 0.00 0.00 9.24 0.014

GRS-interaction-training (1:3)d,g 444 0.85 0.00 0.00 7.34 0.007
aOR and p-values for the interaction effects. Adjusted for study, city, intervention, infant sex, maternal age at birth, maternal smoking during pregnancy, environmental
tobacco smoke in the home, and parental atopy. bPooled data from BAMSE, CAPPS, GINIplus, LISAplus, SAGE and PIAMA; ln(ORs) as published in MacIntyre et al. (2014)
were used as weights (compare Table 1). cestimated in GINIplus within this publication, estimates from the elastic net regression (α = 0.5) for the marginal genetic effects
in GINIplus. dWeights from the interaction term itself when using parts of the data to estimate the weights and the remaining data to determine the GRS. eBalance
training vs. test data 1:1. fBalance training vs. test data 1:2. gBalance training vs. test data 1:3
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thumb to make an even split between training and
test data for GxE interaction studies.

Internal vs. external weights
Our simulation study has confirmed that the gold stand-
ard for the construction of GRS is to use external
weights, e.g., from the marginal genetic effects estimated
in independent study populations, if the external data fit
very well to the study sample. This strong assumption
means that the marginal genetic associations in the ex-
ternal data are the same as in our own study sample, this
might but must not be reached if the phenotype is
assessed in exactly the same way and that there is no
ethnic or age difference between the study populations.
In real data analyses, these assumptions are often not
fulfilled because large scale GWAS are not published for
every phenotype and sometimes only in populations with
different ethnicity, sex or age range.
The violation of these assumptions might lead to a de-

crease of power for detecting interaction effects with
GRS with external weights. Therefore, in the practical
analysis of real data, using internal weights from the
study population itself might often be a more powerful
alternative to detect GxE interactions.
However, in our real data application, the power

reached by GRS with external weights was similar to the
power reached by the two approaches with internal
weights. One reason for that might be that our study
sample (GINIplus) was included in the estimation of the
“external” effects. Therefore, the effect estimates from
the pooled analysis might fit slightly better to the GINI-
plus data than they would have fitted if the GINIplus
data would not have been part of the pooled analysis.
Furthermore, a limitation of the GRS-interaction-
training approach is that the GRSxE interaction term
can only be estimated in a subset (i.e. the test data) of
the original sample data which reduces the power to de-
tect interactions.
A major limitation of GRS with external weights is

that we can only include SNPs for which the marginal
genetic effects have been published. In this regard, GRS
with external weights are usually restricted to SNPs with
a genome-wide significant (p-value <5 × 10−8) marginal
genetic effect in the external study population, whereas
SNPs with a predominant interaction effect are usually
not presented. For GxE interaction studies, this leads to
a publication bias towards SNPs with predominant mar-
ginal genetic effects. To avoid this publication bias and
to increase the power for detecting GxE interactions, es-
timates from genome wide gene-environment inter-
action studies might be used. However, up to now, very
few genome-wide gene-environment interaction studies
have been published because of the limited power to de-
tect interactions in genome-wide analyses.

From a biological perspective, a pathway-orientated
GxE interaction analysis might be a more powerful and
biologically plausible alternative to genome-wide ap-
proaches. Very recently, we could, e.g., show in a study
population consisting of 402 women that genetic varia-
tions in the ER stress pathway might play a role in air
pollution induced inflammation in the lung using the
GRS approach with internal weights from the marginal
genetic effects, although there was no significant mar-
ginal genetic effect on the individual SNP level [7].

GRS-interaction-training vs. GRS-marginal-internal
In scenarios with a predominant interaction effect, i.e.
an interaction effect that is (substantially) larger than the
marginal genetic effect, the GRS-interaction-training ap-
proach was more powerful than the GRS-marginal-
internal approach, particularly in the presence of noise
SNPs. Furthermore, applying the GRS-marginal-internal
approach in scenarios with predominant interaction ef-
fects might lead to a high number of sign-
misspecifications when the MAFs of the risk SNPs are
≥0.2 and in the presence of noise.
However, in scenarios with a predominant marginal

genetic effect and a smaller additional interaction effect,
the GRS-marginal-internal approach achieved a slightly
higher power than GRS-interaction-training approach
with an acceptable number of sign-misspecifications.
In real data applications, the decision if the interaction

or the marginal genetic effect is predominant, should be
made a priori and be based on biological knowledge. If
the SNPs were chosen because the underlying genes had
been identified to be marginally associated with the
same or a related phenotype (e.g. in a large-scale
genome-wide meta-analysis), independently of the envir-
onmental exposure, the weights should be determined
from the marginal genetic effects (GRS-marginal-in-
ternal). Nevertheless, if the SNPs were chosen because
of their potential impact on the biological mechanisms
mediating the association between the environmental
exposure and disease development, the weights should
be determined from the interaction term (GRS-inter-
action-training approach). Either this knowledge might
be based on mechanistic studies or on epigenome-wide
association studies (EWAS). EWAS present differentially
methylated probes (DMPs) and regions (DMRs) in bal-
ance to disease outcomes (e.g. [26] for lung function).
Since EWAS identify regions that are modified by envir-
onmental factors, they might provide a good pre-
selection of genetic regions to be considered in GxE
interaction studies.
In the TAG study, e.g., the considered SNPs were

chosen, as the biological mechanisms were thought to
underlie both the toxicity of traffic-related air pollution
and the development of asthma [27]. This was
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confirmed by our performed analysis, which shows that
the GRS-marginal-internal approach reached almost the
same power as GRS-interaction-training approach.

Strengths and limitations
Our study has several strengths. To our knowledge this
is the first study presenting GRS with weights from the
interaction term itself and comparing GRS with internal
vs. external weights for the detection of gene-
environment interactions. Furthermore, this is the first
study comparing interaction approaches in scenarios
with predominant interaction vs. predominant marginal
genetic effects, a differentiation that is often ignored in
the real data practice but which was shown to have a
major impact on the selection of the most powerful ana-
lytic strategy. A further strength is that we analyzed the
performance of the GRS approaches in the presence of
noise and SNPs with different MAFs to cover several
data structures common in GxE interaction studies.
A few limitations and outstanding issues should be

noted. In our simulation study, we compared the per-
formance of GRS with internal and external weights in
quite simple scenarios, which might not cover all types
of interaction models. We did not include different
modes of inheritance, gene-gene or other more complex
interactions in these scenarios. Such considerations
might be beneficial to further optimize the weighted
GRS for other scenarios.
Moreover, a comparison of the considered GRS ap-

proaches with other state-of-the-art interaction ap-
proaches might be interesting. However, as Aschard
recently showed, the use of GRS can increase the power
to detect GxE interactions in comparison to common
univariate single-variant approaches and the joint test of
main genetic and interaction effects [4, 5]. We addition-
ally compared our GRS approaches with a multiple lo-
gistic lasso regression considering p-values estimated
using the significance test for the lasso [28]. The results
of this comparison presented in Additional file 1 show
that our GRS approaches outperform the results of a
lasso regression in the considered scenarios.
Furthermore, there is room for improvement regard-

ing the decision making process between a predominant
interaction effect and a predominant marginal genetic
effect because detailed a priori knowledge about the bio-
logical pathways is often limited. One possibility to im-
prove the a-priori knowledge might be to use
information from EWAS. The growing field of epigenet-
ics might clarify many of the biological pathways how
environmental exposures might induce health problems
and thereby improve the selection process of candidate
SNPs for pathway based GxE interaction studies. A pos-
sibility to improve the GRS approaches might be to
combine the GRS-marginal-internal approach and the

GRS-interaction-training approach to reach a good
power for the detection of interactions in scenarios with
predominant marginal genetic effects as well as in sce-
narios with predominant interaction effects.
Our real data application has the limitation that we

could only include the three SNPs from which we had
previous knowledge about the marginal genetic and
interaction effects in a large pooled analysis [23]. How-
ever, this is often a limitation in the daily practice as
well, since external weights are often limited to, e.g.,
genome-wide significant SNPs because other effect
estimates are often not reported. Furthermore, since
GINIplus (N = 593) was part of the TAG consortia (N =
4465), the weights from the pooled marginal genetic ef-
fects were not independent from our sample data. How-
ever, this problem does also often occur in the real data
practice because large scale genome-wide meta-analyses
often include all study populations that are available for
the considered phenotype and thereby often include the
own study sample as well.

Conclusion
In conclusion, when no appropriate external weights
are available (due to, e.g., ethnic differences or differ-
ences in the phenotype assessment), we recommend
to use internal weights from the study population it-
self to construct weighted GRS for GxE interaction
studies. If the SNPs were chosen because a marginal
genetic effect was hypothesized, the weights should be
estimated from the marginal genetic effects (GRS-
marginal-internal approach). If the SNPs were chosen
because of their potential impact on the biological
mechanisms mediating the association between the
environmental exposure and disease development, the
weights should be estimated from the interaction
term itself in a training dataset (GRS-interaction-
training approach).

Additional file

Additional file 1: Table S1. Simulated predominant interaction effects
(example data for N = 3000). Table S2. Simulated marginal genetic
effects (example data for N = 3000). Comparison of GRS approaches and
lasso regression. Figure S1. Power and sign-misspecifications comparison.
Figure S2. Type I error comparison. (DOCX 405 kb)
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