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Abstract

Background: Accurate imputation plays a major role in genomic studies of livestock industries, where the number
of genotyped or sequenced animals is limited by costs. This study explored methods to create an ideal reference
population for imputation to Next Generation Sequencing data in cattle.

Methods: Methods for clustering of animals for imputation were explored, using 1000 Bull Genomes Project
sequence data on 1146 animals from a variety of beef and dairy breeds. Imputation from 50 K to 777 K was first
carried out to choose an ideal clustering method, using ADMIXTURE or PLINK clustering algorithms with either
genotypes or reconstructed haplotypes.

Results: Due to efficiency, accuracy and ease of use, clustering with PLINK using haplotypes as quasi-genotypes was
chosen as the most advantageous grouping method. It was found that using a clustered population slightly decreased
computing time, while maintaining accuracy across the population. Although overall accuracy remained the same, a
slight increase in accuracy was observed for groups of animals in some breeds (primarily purebred beef cattle from
breeds with fewer sequenced animals) and for other groups, primarily crossbreed animals, a slight decrease in accuracy
was observed. However, it was noted that some animals in each breed were poorly imputed across all methods. When
imputed sequences were included in the reference population to aid imputation of poorly imputed animals, a small
increase in overall accuracy was observed for nearly every individual in the population. Two models were created to
predict imputation accuracy, a complete model using all information available including Euclidean distances from
genotypes and haplotypes, pedigree information, and clustering groups and a simple model using only breed and an
Euclidean distance matrix as predictors. Both models were successful in predicting imputation accuracy, with correlations
between predicted and true imputation accuracy as measured by concordance rate of 0.87 and 0.83, respectively.

Conclusions: A clustering methodology can be very useful to subgroup cattle for efficient genotype imputation. In
addition, accuracy of genotype imputation from medium to high-density Single Nucleotide Polymorphisms (SNP) chip
panels to whole-genome sequence can be predicted well using a simple linear model defined in this study.
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Background

Genotype imputation algorithms have played a crucial
role on increasing the size of a population with high-
density (HD) or sequence genotypes when cost is the
limiting factor in studies design or for practical applica-
tions in livestock industries. Imputation in cattle from
low density SNP chip panels to 50 K or 777 K genotype
panels has been shown to be highly accurate, especially
in breeds with large reference populations of animals
with HD genotypes, and high levels of linkage disequilib-
rium (LD) across the genome [1, 2].

The challenges for accurate imputation to sequence in
cattle is due to the high incidence of low minor allele
frequency variants that are much more difficult to im-
pute with good accuracy. However, imputation from the
777 K SNP chip panel to full sequence is possible with
moderate accuracy, especially for variants above a minor
allele threshold of 5% [3]. Less common variants are much
more difficult to impute accurately, and any variants that
appear at a frequency lower than 0.05 are imputed ex-
tremely poorly [4]. To increase the accuracy of imputation
in cattle populations, an ideal group of animals need to be
sequenced in order to maximize the number of haplotypes
available in the reference population [5].

Another important concern to maximize imputation
accuracy is to select animals for sequence that have been
shown to be more genetically related to all other animals
in the population, especially those that are to be imputed
from lower density SNP chip panels [6]. It has been
reported in the literature that a stronger average rela-
tionship between reference and imputation population
will maximize imputation accuracy. However, with higher
density panels for imputation, the impact of genetic rela-
tionship decreases [2]. An additional concern for maxi-
mizing accuracy of imputation is the size of the reference
population. The accuracy of imputation improves as the
reference population size increases, given that animals
added to the reference share haplotypes with those in the
imputation population. When imputing from a very low
density panel in comparison to the reference, it has been
shown that combining reference genotypes from various
less related breeds (i.e., that do not share many haplo-
types) will decrease imputation accuracy [7].

Accuracy of imputation from HD to full sequence
across all breeds has been shown to be more effective
than imputation carried out within a single breed [4].
However, there may be a down-side to combining all
breeds together for imputation. It is possible that some
breeds, especially those selected for different purposes,
may be too distant to aid genotype imputation of ani-
mals in those other breeds, and could add spuriously as-
sociated haplotypes to the imputation process that
would decrease overall accuracy. It has been shown that
using a clustering algorithm to better group animals into
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accurate sub-populations could aid in the accuracy of gen-
omic selection for multi-breed and crossbred beef cattle [8].

A large sequenced population of cattle has a wide
array of applications for both association analysis and
genomic selection, leading to a better understanding and
ability to utilize the bovine genome for more accurate
genomic selection. In humans, a large sequenced popu-
lation has already been shown to be useful to identify
many rare variants associated with traits of interest [9].
In cattle, it lends to the possibility of fine-mapping genes
for traits of economic interest, and potentially a better
understanding of the genetic architecture of traits. Hav-
ing multiple breeds with sequenced populations could
significantly aid the detection of rare causal variants
[10]. Imputing animals that are closely related to the ref-
erence population, assumed to have a high imputation
accuracy, and then imputing less related animals subse-
quently may be a viable method to increase accuracy.
Imputing the large number of existing genotypes to se-
quence is a crucial step to maximize the power and ac-
curacy of Next Generation Sequencing (NGS) studies,
and all methods should be thoroughly explored.

Individual imputation accuracy may also have a signifi-
cant effect on the accuracy of subsequent Genome-Wide
Association Studies (GWAS) and genomic prediction steps
after a population is imputed to sequence. Removing
poorly imputed individuals would be advantageous to
the accuracy of studies using imputed sequences, as
well as routine use of sequences in genomic evaluations
in the future.

In this study we investigated imputation accuracy from
50 K as well as 777 K to sequence genotypes, using cluster-
ing methodologies as well as imputing across all animals to
determine the best methodology for imputation from
various densities. Clustering algorithms using both geno-
types and haplotypes were evaluated. In addition, we also
explored a method to impute animals in a step-wise
manner, imputing first the most highly related animals,
based on Euclidean distances, and then including those
imputed genotypes in the reference population for im-
putation of less related genotypes. We also investigated
a predictive model for imputation accuracy based on
clustering, breed, and relationship data using only low-
density genotypes.

Methods

Data

Full genome sequences from 1146 bulls from 27 pure and
composite breeds of both dairy and beef cattle were used
in this study. The dataset is property of the 1000 Bull Ge-
nomes Project (Run 4.0). Bulls were sequenced at an aver-
age coverage depth of 11X. Pedigree information was
available for a limited number of animals, which resulted in
a relatively small degree of interconnectedness between
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animals in the population, even within breed, relatedness
was taken into account. Based solely on pedigree informa-
tion, animals averaged having 0.2 sequenced parents and
0.2 sequenced offspring. Given that for most breeds, these
are the most influential sires worldwide, which are known
to be highly related with one another, this is most likely an
underestimation of total relatedness. However, there were
measures taken in most populations to maximize the total
number of sequenced haplotypes, so even limited pedigree
relatedness within one generation may closely reflect the
true level of relatedness of all sequenced individuals. Pedi-
gree information was used for all further analysis, but did
not make a significant impact on any results, and could
have been excluded with no serious effect. The sequences
contained 36,916,857 variants before data editing. Loci with
extremely low minor allele frequencies (occurring less than
four times across all individuals) were removed to control
for false positive sequence calls. It has also been shown
that these variants cannot be imputed without a much
larger reference population. After removing these sites,
23,873,140 variants remained for further analysis.

Clustering

Sequences were first filtered to only contain the SNPs
present on the 50 K Illumina BovineSNP50 beadchip
(lumina Inc., San Diego, USA). All animals were filtered
to contain only these 48,455 variants in common between
sequence and the 50 K Illumina BovineSNP50 beadchip.
This was done to mimic the scenario where 50 K geno-
types are to be imputed to sequence in two steps, and
clustering analysis could be performed on 50 K genotypes
before imputation. Three clustering methods: 1) ADMIX-
TURE, 2) PLINK using genotypes, and 3) PLINK using re-
constructed haplotypes were explored for imputation
from 50 K to 777 K, and compared to imputation using all
animals in one population. The method that provided the
highest overall accuracy of imputation from 50 K to 777 K
was then selected to be compared to imputation using all
individuals from 777 K to sequence.

ADMIXTURE model

The ADMIXTURE model, as detailed by Alexander et al.
[11], allows for the detection of “chunks” of chromosomes
that are unbroken and that originally stemmed from an
ancestral population. The model was applied to each ani-
mal to determine the proportion of the genome estimated
to come from each cluster for each animal. The optimal
number of clusters was chosen by iterating over one to 25
clusters and minimizing the coefficient of variation error,
as calculated by the ADMIXTURE v1.3 software (https://
www.genetics.ucla.edu/software/admixture/, [11]). A total
of four overall clusters were used for genotype imputation
in this method.
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PLINK model (identical by state clustering)

Identical by state (IBS) clustering was carried out using
the PLINK v1.07 software [12]. This algorithm compares
pairwise IBS metrics for each pair of individuals. This IBS
metric is calculated as the genetic distance between two
individuals based on genotype. Each animal is then con-
sidered a cluster, and each cluster is compared, starting
with clusters that have the smallest distance between
them, using a set of metrics [12] to determine if these two
clusters should be merged. PLINK v1.07 software also al-
lows for a fixed number of clusters to be set. To ensure
adequate population sizes for each cluster under imput-
ation, fixed cluster sizes were tested, beginning with six,
and reduced until no cluster had fewer than 150 animals.
This resulted in five clusters being created for use in
imputation. As imputation relies primarily on shared
haplotypes (i.e. not shared genotypes) haplotypes were
reconstructed using the haplotype phasing Expectation-
Maximization algorithm in PLINK v1.07 software. Al-
though phasing across breeds may be inaccurate, and
could potentially lead to less accurate clustering, for small
breeds it is impossible to accurately phase individuals
within breed. Four SNP windows were chosen for this
analysis, and haplotypes were then treated as multi-allelic
SNPs for clustering. IBS clustering was carried out in
the same manner as for genotypes using the PLINK
software algorithm. Five clusters were once again
chosen as the optimal number for imputation. There
was a large concordance between clusters using geno-
type and haplotype information (data not shown). How-
ever many of the multi-breed and composite breed
individuals were clustered differently when using haplo-
types instead of genotypes.

Genotype imputation

Imputation was carried out for each group by filtering
the sequence calls for that group. For each imputation
scenario, reference and imputation groups were created
at random by splitting each of the scenarios into five
subgroups. These five subgroups were divided randomly,
within breed, and then breed subgroups were combined
together at random to make the five groups for imput-
ation. For clustering analysis, this meant a total of 20 or
25 imputation groups were used to impute every animal.
Computation time was also explored for each of these
subgroups, as well as time per animal to ensure this
process was not limiting if it were to be implemented on
larger populations in a commercial setting. Therefore,
only the sites concordant with the 50 K panel were kept,
filtering the remainder of the groups to SNPs contained
on the Illumina 777 K Bovine Illumina HD Beadchip.
This was carried out for all five groups and, conse-
quently, each animal in the population was imputed
from their mock 50 K panel genotype to a mock 777 K
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panel. Imputation accuracy for this step was then inves-
tigated. Imputation was carried out once again using the
same groups, from imputed 777 K to the full sequence
genotype for all animals as well as the highest accuracy
clustering groups from imputation from 50 K to 777 K,
which was clustering based on haplotypes using the
PLINK algorithm. Indels were excluded for the imput-
ation analysis. All the imputation were performed using
the Fimpute v2.2 software [2].

Accuracy of imputation

Accuracies of imputation were calculated using both
genotype concordance rate and allelic R*> measures on a
per-animal basis. The genotype concordance rate is cal-
culated by comparing the imputed sequence genotype to
the true sequence for the same animal (in the case the
sequence calls from the 1000 Bull Genomes Project
pipeline, as described by Daetwyler et al. [13]). Correct
calls are scored as 1 while incorrect calls are scored as 0,
even if they are partially correct (calling a heterozygote
when the correct call is a homozygote or vice-versa).The
genotype concordance rate is the average of these scores
across all sites for a specific animal. Concordance rates
were also measured for only sites with minor allele fre-
quency (MAF) lower than 0.05. Allelic R* was calculated
as the squared correlation of the imputed sequence
genotype on the true sequence.

Using imputed sequences as reference

Increasing reference size by including imputed sequence
genotypes in the reference population was explored by
using Euclidean distances to select the animals that
would benefit most from having a larger reference popu-
lation, likely because of rarer haplotypes. Euclidean dis-
tances between each pair of animals were calculated
based on the following formula:

n

Z (%“Pi)z

1

Where g and p are the genotype or haplotype states at
locus i, for each of n loci for genotypes and each of n
pseudo-genotypes when using haplotypes. Using Euclidean
distance captures both the effects of relatedness between
individuals, as well as allele frequencies. After Euclidean
distances were calculated between each pair of animals, we
determined which animals were not expected to be im-
puted well. Animals with little relation to the rest of the
population were thought to be poorly imputed, and so ani-
mals with a mean or minimum Euclidean distance two or
greater standard deviations above the mean were placed in
the “poorly imputed” groups. This resulted in 90 and 121
animals for average and minimum Euclidean distance, re-
spectively. The imputed sequence genotypes from animals
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with high degrees of relatedness were included in the refer-
ence population along with the rest of the population to
impute the small group of animals predicted to be imputed
with low accuracy based solely on average Euclidean dis-
tance. This same procedure was carried out again using
only the minimum Euclidean distance. Animals with a high
minimum Euclidean distance have no relative in the
reference population or any animals that share a signifi-
cant portion of the genome and are likely to benefit
greatly from a larger reference population with a haplo-
type library more indicative of the haplotype frequen-
cies in the overall population in order to maximize
imputation accuracy.

Predicting imputation accuracy

A predictive model was created for accuracy of imput-
ation to sequence using only information available on
the 50 K panel. First, to capture the degree to which
each animal was related to the reference population for
imputation. Euclidean distances were calculated using
both 50 K genotypes, as well as haplotypes reconstructed
using the PLINK algorithm, as described above, to deter-
mine which method predicted more efficiently the ac-
curacy of imputation. A 5-fold random cross validation
was used to predict imputation accuracy of each sub-
group, using the other four groups to estimate the effect
and significance of each term in the model. The effects
tested for the model development were: breed, PLINK
cluster based on both haplotypes and genotypes, AD-
MIXTURE cluster, maximum, minimum and average
Euclidean distances for both genotype and haplotype, as
well as number of parents and number of progeny in the
sequenced reference population. The models were built
based on backwards selection. In brief, after each model
run, the least significant effect, based on model term
p-value, was removed and the model was run again. Each
time, the cross-validation was carried out, and terms were
removed until the squared correlation between predicted
imputation accuracy and true imputation accuracy de-
creased by more than 0.01 across the entire population.
Once the final model was determined, the model was run
one final time using all animals to get the optimal esti-
mates for each linear model term for future imputation of
animals to sequence using the 1000 Bull Genomes Project
population as reference.

Additionally, a reduced model was investigated to ease
the amount of computation and processing time. This
was carried out in order to make a more practical model
that could be used as a routine quality control step for
removing poorly imputed sequences from subsequent
analysis. This model used only Euclidean distances as
calculated using 50 K genotypes, breed effects and pedi-
gree information.



Larmer et al. BMC Genetics (2017) 18:120

After parameter reduction, a simple linear model was
constructed to predict imputation accuracy as follows:

Accuracy = Xpreea + XPlinkHapClust
+ B, *EuclideanGeno Minimum
+ B, +EuclideanGeno Maximum
+ ByeEuclideanHaplo Average
+ ByeNumber of Parents + residual

Where X and B represent fixed categorical and fixed
linear regression coefficient effects, respectively.

Results
Clustering methods
Each clustering method was restricted by the minimum
number of animals per cluster (i.e. 150 individuals).
Numbers of clusters, as well as minimum and maximum
cluster size from each of the three clustering methodolo-
gies are shown in Table 1. ADMIXTURE had one fewer
cluster than either method using PLINK, resulting in
larger mean reference populations for imputation (278
individuals for ADMIXTURE method compared to 229
when using PLINK methodology). Clustering strategies
were compared by looking at imputation accuracy after
using clustered imputation from 50 K to 777 K masked
genotype calls and then combining all animals together to
impute to sequence. This was a reasonable method for
testing clusters, as clustering should make a larger differ-
ence when imputing from a sparser low density panel.
The accuracy of genotype imputation from 50 K to full
sequence in two steps for each of the three clustering
methods as well as when using all animals as reference
from 50 K to 777 K is presented in Table 2. The accur-
acy of imputation was measured by overall concordance
rate, concordance rate for sites with MAF lower than
0.05, and R? Table 2 also presents the average amount of
computing time to impute each animal genotype/sequence.
Clustering with ADMIXTURE as well as clustering using
PLINK haplotypes was nearly equivalent and only two ani-
mals clustered differently across methods. Using PLINK
haplotypes resulted in smaller populations and, conse-
quently, slightly faster computing times.

Imputation from 777 K to sequence

After imputation had been carried out from 50 K to
777 K, two methods were tested for imputation to

Table 1 Summary statistics of Clusters from 3 different algorithms

Scenario Number of Minimum Maximum
clusters cluster size cluster size

ADMIXTURE 4 190 346

PLINK Genotype 5 168 280

PLINK Haplotype 5 172 278
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Table 2 Accuracy of Imputation from 50 K to sequence, with
either no clustering or different clustering algorithms used to
determine reference population for imputation from 50 K to 777 K

Scenario Overall R Time/ Concordance  Concordance
Animal MAF < 0.05

All 0.819 0:0347 0934 0974

ADMIXTURE 0810 0.03:48 0931 0973

PLINK Genotype  0.807 0:03:37 0930 0973

PLINK Haplotype ~ 0.810 0:0344 0931 0973

sequence. First, using all animals as the reference popula-
tion or secondly, using only animals within each cluster.
One PLINK haplotype cluster was randomly chosen for
this analysis due to the computational requirements of im-
putation to sequence. These animals were imputed either
within cluster, split randomly into the same five subgroups
that were used for imputation to 777 K, or by using results
from imputation from step 1 where imputation was car-
ried out on all animals. Genotypes on 777 K came from
two separate sources: 1) those imputed from using all ani-
mals as reference from 50 K to 777 K or, 2) from using
clustered reference populations. This resulted in four sce-
narios to be compared. The results of these comparisons
based on genotype concordance, allelic R% and computing
time are presented in Table 3.

Figure 1 shows imputation accuracy per animal when
all animals were used as reference, as well as for PLINK
haplotype clustering for 777 K to sequence imputation.
For most animals clustering was a useful strategy to
marginally increase imputation accuracy. However, for
some specific individuals, clustering had a large negative
effect on accuracy of imputation. This was further ex-
plored by breed, and average difference in imputation
accuracy compared to using all animals in reference per
breed by scenario was also examined, along with the
proportions of animals that had improved accuracy of
imputation per breed (Table 4). Accuracy of imputation
from 50 K to 777 K was the largest factor in overall

Table 3 Accuracy of imputation from 50 K to sequence, with
either no clustering (ALL) or PLINK haplotype clustering (PLINKH)
used to determine reference population for imputation from

777 K to sequence, and different reference populations (ALL or
PLINKH) having been used for imputation from 50 K to sequence

Scenario Overall  Time/ Concordance  Concordance
0K L Animal MAF < 0.05
ALL ALL 0.819 0:0347 0935 0974

PLINKH  ALL 0.810 0:0344 0931 0973

ALL PLINKH 0817 0:0232 0935 0.973

PLINKH ~ PLINKH 0810 0:02:28 0932 0973
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Fig. 1 Imputation accuracy per animal from 777 K to sequence using all animals in reference, or using only animals within PLINK haplotype

Animal

accuracy. In addition, using all animals for the first step
was seen to provide the highest concordance rate and R>
values. There was little difference for imputation accur-
acy between scenarios from 777 K to sequence, but com-
putation time was significantly reduced when using

clusters or compared to using ADMIXTURE.

We also explored individual genome regions to ensure
there were no areas significantly negatively impacted by
clustering before imputation. These results can be seen

in Fig. 3, which shows that there was no adverse effect.

Using imputed sequences as reference

Accuracy of imputation for animals considered to be im-
puted poorly based on average or minimum Euclidean dis-
tances with the reference population were found to
increase on average when imputed sequence genotypes
were included in the reference population. Minimum Eu-
clidean distance was a better predictor of poor imputation
accuracy, as the group of individuals with minimum Eu-
clidean distance more than one standard deviation greater
than the mean had a very poor imputation accuracy when

Table 4 Difference between concordance using PLINK clustering for one or two steps of imputation (directly from low density
or low to medium to high) compared to using all animals in the reference population per breed and proportion of animals with
improved accuracy for different imputation reference populations

Breed

PLINK (1 step) average
change in accuracy
after clustering

PLINK (1 step) Proportion of

individuals in group with
improved accuracy

PLINK (2 steps) average
change in accuracy after
clustering

PLINK (2 steps) Proportion
of individuals in group with
improved accuracy

Alberta Composite
Angus

Red Angus
Ayrshire
BeefBooster
Brown Swiss
Charolais

Gelbvieh

Guelph Composite
Hereford

Holstein

Red and White Holstein
Jersey

Limousin
Montbeliarde
Normande

Simmental

0.035
0.005
0.000
—-0.001
0.005
0.021
0.060
0.001
0.000
0.000
—0.007
0.001
-0.014
0.054
-0.012
-0.001
-0.028

0.714 0.004 0.714
0.727 0.004 0.727
0.000 0.00 0.400
0.800 —-0.002 1.000
0.000 0.022 0.000
0917 0.020 0917
0.500 0.062 0.000
1.000 0.044 1.000
0.200 0.003 0.200
0429 0.002 0.286
0.500 —0.005 0.362
0.250 0.005 0.000
0.833 -0.016 1.000
0.667 0.063 0.500
0.833 —-0.003 1.000
1.000 —-0.002 1.000
0.500 -0.026 0.568
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using the whole population of true sequences as reference
(0.9272) (data not shown). When the reference population
was expanded for this group by adding 130 imputed se-
quences (those animals in the same original imput-
ation group with low minimum Euclidean distances),
the accuracy of imputation remained unchanged, but im-
proved for some animals. Of the 121 animals in the
“poorly imputed” group, adding imputed sequences in-
creased imputation accuracy for 89 animals, decreased
accuracy in four individuals and made no difference
in 28. The results of adding imputed sequences when
using average Euclidean distance to predict poorly im-
puted individuals were also positive. An average in-
crease of 0.001 was observed, and out of the 90
animals in the “poorly imputed” group, 61 had in-
creases in accuracy, six sequences were more poorly
imputed, and 23 had no change. Average change in
accuracy by breed is included in Table 4 for breeds
that had at least four animals in the “poorly imputed”
population.

Predicting imputation accuracy

A linear model using breed, ADMIXTURE cluster, PLINK
genotype cluster, PLINK haplotype cluster, Euclidean
minimum, maximum, and average distances for both ge-
notypes and haplotypes, number of sequenced parents
and number of sequenced progeny was initially tested.
The initial model gave a correlation between predicted
and actual genotype concordance of 0.8410 based on 5-
fold cross validation.

A reduced model was then tested after eliminating model
terms with little or no effect. This model limited clustering
steps to only using PLINK clustering based on haplotypes,
and resulted in a correlation between predicted and actual
imputation accuracy of 0.8710. Seven of the 10 worst indi-
viduals for actual imputation accuracy were predicted to be
among the bottom 10 individuals, which is important for
this model to be used as an exclusion criterion. Figure 2
shows the predicted versus actual imputation accuracy for
all animals for the complete and reduced models.

A reduced model, containing only information from
Euclidean genotypes was also tested. Breed, parent and pro-
geny effects were once again tested in the model. It was
found again that progeny effect was non-significant
and it was removed. This model was less accurate
than the full model as provided above, but maintained
a correlation between actual and predicted imputation
accuracy of 0.8330. In this case six out of the bottom
10 individuals for imputation accuracy were still predicted
to be in the worst 10 imputed sequence genotypes. Fur-
thermore, all 10 of the worst sequence genotypes were
predicted to be in the lowest 25 for imputation accuracy
(data not shown).
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Discussion

This study shows that reference population structure has
a variable effect on imputation accuracy, which depends
heavily on the breed to be imputed. Even with an imput-
ation algorithm that uses population relationship infor-
mation by searching for the longest possible matching
haplotypes [2], including unrelated animals from differ-
ent breeds in the reference population can negatively
impact imputation accuracy, especially when reference
population is small. However, with a small number of
animals sequenced it is not possible to carry out within-
breed imputation and expect to capture all or even a
majority of the possible haplotypes needed for accurate
imputation. This is especially true for breeds other than
Holstein, Simmental, or Angus, who have fewer than
100 animals sequenced within breed to date [13]. In these
cases, novel approaches to grouping animals needed to be
explored and, as shown here, clustering of individuals for
imputation to sequence can be effective for certain groups
of animals. The results in this study were obtained from
FImpute software, which its underlying algorithm essen-
tially mimics a clustering approach based on haplotype
similarity. The impact of clustering should also be investi-
gated for other imputation methods in further studies.
Genomic clustering methodologies have been shown to be
effective at determining relationships between animals
resulting from population divergence and admixing on a
breed wide scale and this principle should apply well to an
individuals’ genome also [14].

Clustering based on haplotypes rather than genotypes
is a logical step for imputation accuracy, as sharing of
haplotypes between reference and imputation population
is the foundation of accurate imputation [15]. Haplotype
blocks have been shown to be a strong indicator of
breed relatedness. However, beef and dairy cattle breeds
are not easily differentiated by using haplotype blocks
[16]. Sharing of haplotypes examined by averaging across
the genome, as was done based on the results from
PLINK in this study, is a more logical step for imput-
ation. All areas of the genome need to be treated and
weighted equally when looking at imputation, to ensure
there are no especially poorly imputed regions.

Figure 3 shows that when imputation is split into sub-
populations by clustering, there are no adverse effects
on any genomic region when comparing to using all ani-
mals as reference when using FImpute software for imput-
ation. However, it also shows that poorly imputed regions
cannot be significantly aided by altering the reference
population structure. These regions that are poorly im-
puted may be due to longer haplotypes being needed and
unavailable, or they may be reflective of recombination
hot-spots, where a large number of haplotypes are present
and, therefore, are poorly estimated by current imputation
methods [17]. Poorly imputed regions could also be due
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to poorly annotated SNPs or greater levels of heterozygos-
ity in these regions [18]. A solution to these problems is
better SNP annotation. However, this is unlikely to be the
problem at this point as the 50 K and 777 K bovine SNP
chips have been tested by LD analysis and any misplaced
SNPs have been relocated [19].

For long segments to be inaccurately imputed in this
study due to poor annotation there would have to be
entire sequence regions misplaced as accuracy was mea-
sured based on large windows of SNPs. This is unlikely
to be the case as well, but could have some impact on
accuracy of certain regions. The primary cause of poor
accuracy in some regions is likely to be due to: 1) high
haplotype diversity and low haplotype frequency; and, 2)
poor concordance of commercial SNP markers and
sequence calls in terms of minor allele frequency, lead-
ing to lower than expected levels of linkage between
markers with short distances between them [5].

The only likely way to improve accuracy in regions of
high heterozygosity and recombination is to increase the
size of the reference population from the same breed.
This allows for FImpute software, or other imputation
algorithms, to more accurately choose shared haplo-
types, based on length or shared haplotype probability,
among individuals and choose haplotypes that are less
likely to have undergone a recombination event between
the reference and target individuals [2].

When using the FImpute algorithm, clustering refer-
ence populations for selection had no effect or a very
small positive effect for most animals, as shown in Fig. 1,
as well as on the proportion of individuals within each
breed that had improved accuracy, as seen in Table 4.
Other imputation algorithms that do not use decreasing
window sizes, as Flmpute software does, may stand to
gain more from clustering before imputation. The rea-
son for that is because FImpute software groups animals
by relationships inherently by first looking at longest
haplotypes and shrinking haplotype sizes progressively.
However, there were a number of animals that had a
significant decrease in imputation accuracy from a clus-
tered reference population. These individuals were often
crossbred or composite breed animals. Therefore, for
some genomic regions haplotype frequencies and phases
differ across breeds (i.e. different cluster); which can ex-
plain the decrease in accuracy. There were also certain
animals that were clustered outside of their registered
breed, and may be indicative of animals with a high pro-
portion of sequence errors on sites shared between the
sequence and 50 K SNP panel, or animals that have a
registered breed that is not fully representative of their
genome status. This may be due to varied rules for regis-
tering animals within a breed. Some breeds have closed
herd books, and as such will share haplotypes primarily
with animals only in their own breed (Dr. Stephen Miller,
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AgResearch, personal communication). These animals are
likely to gain little from a clustering algorithm as short
haplotypes that may be shared with other breeds are less
common and thus less of a factor in imputation accuracy.

Animals from breeds with more lenient rules regarding
breed status may gain more from clustering, as many
shared haplotypes with other breeds may be needed for
accurate imputation [7], and ensuring that only animals
with relevant haplotypes are included in the reference
population will reduce uncertainties where the wrong
haplotype could be filled in. As presented in Table 4
clustering had a small or negative effect on most animals
in the Angus and Hereford breeds, in which both breeds
have closed herd books and, therefore, would stand to
gain little from outside animals being included in the
reference population. On the other hand, Simmental and
Limousin animals, which come from a more lenient set
of rules on purebred animal status, had larger propor-
tions of animals that had increased imputation accuracy.
Increasing accuracy of Limousin animals is a very posi-
tive result, as it has been a poorly imputed breed, even
when compared to breeds of similar effective size and
level of LD [4].

For many studies, there is a breed, or group of breeds,
or crossbred animals that are the target population to be
used for some subsequent analysis [20]. It follows logic-
ally, then, that improving imputation accuracy specific-
ally for that group would be a research priority. Our
findings show that there are ways to improve imputation
accuracy for certain groups of animals, and tailoring the
reference population for the target animals can have a
positive effect on overall accuracy. The grouping/clustering
of animals carried out in this study was done to try maxi-
mizing accuracy for all animals. However, there could be
better ways to cluster animals to improve accuracy for a
very specific group. Ventura et al. [21] reported that having
animals in the reference population that well represented
the breed composition of crossbred animals was essential
to accurate imputation of crossbred beef cattle from 6 K to
50 K SNP chip panels. This study builds on that result
showing that we can use genomic information to better es-
timate which animals should be grouped together for im-
putation or even genomic prediction purposes.

Using metrics such as Euclidean distances, it would be
possible to only include animals in the reference popula-
tion that are above a given threshold of relationship
compared to the target population. It may be possible to
further divide this group, if a more diverse set of animals
was targeted. In this case, it would also be possible,
unlike in this study design, for a sequenced individual to
be in multiple reference populations if they shared hap-
lotypes with more than one target imputation popula-
tion. As it has been shown here, clustering with PLINK
on haplotypes was the most effective tool for grouping
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animals. It is possible to calculate identical by state
matrices for all animals in PLINK using either geno-
types, or haplotypes as quasi-genotypes, which would be
a useful tool for this type of intuitive clustering step be-
fore imputation [12].

It is well established that reference population size is
one of the primary factors affecting the quality of imput-
ation [22-24]. Although the FImpute imputation algo-
rithm works based primarily on long haplotype sharing,
in the absence of that, there is an inherent probabilistic
nature to imputation. When many haplotypes are avail-
able to be chosen to fill in a specific set of SNPs for an
animal or group of animals, often it is the most common
haplotype that is filled in.

With small reference population size, the most com-
mon haplotype in the reference population may not be
the most common in the entire population, especially
not in the targeted population. Imputation to sequence
creates a further problem in part due to a greater pro-
portion of incorrect calls compared to SNP genotyping
as well as a significantly lower average minor allele fre-
quency [13]. To help solve this problem, we investigated
the potential of adding imputed sequence genotypes to
the reference population. If sequence genotypes that are
known to be well imputed due to a high degree of re-
latedness to the original reference population are im-
puted first and added to the reference group, the
haplotype library will become more representative of the
total population. As the haplotype library better approxi-
mates the entire population, the probability of choosing
the correct haplotype increases when the algorithm does
not have long shared haplotypes to be used.

Euclidean distances were chosen as a simple metric to
determine the average genomic relatedness between an
individual and the reference population. At first it was
thought that average Euclidean distance would be the
ideal metric, as it captured the degree to which an indi-
vidual was related to every animal in the reference. This
should establish the degree of haplotype sharing between
that individual and the reference [25]. However, it was
observed that average Euclidean distance did not accur-
ately predict which individuals were poorly imputed.
This is likely due to having a large multi-breed training
population so the average relatedness is not as much a
metric of haplotype sharing, as it is of where an individ-
ual breed lies in the phylogenetic scope of the entire
population. If that individual comes from a breed that
has diverged further from most other breeds, it will have
a much higher Euclidean distance. However, if there are
other individuals of that breed in the reference popula-
tion, those sequences may still be very well imputed.
Conversely, a low average Euclidean distance may indi-
cate an admixed or crossbred animal, that shares much
of its genotype with many animals in the population, but
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for that same reason, is a difficult animal to impute due
to a high degree of haplotype uncertainty in the imput-
ation procedure.

Minimum Euclidean distance was chosen as an indica-
tor of the closest relative in the reference population
who would share a significant number of long haplo-
types, and greatly improve imputation accuracy. This
proved to be a much better indicator of imputation ac-
curacy and seems to effectively select animals who will
be well imputed. An increase in accuracy for individuals
who were estimated to be poorly imputed was observed
when imputed genotypes, selected by minimum Euclid-
ean distance, were added to the reference population for
imputation. Although this increase in accuracy is small,
it is consistent across almost all animals and is a simple
step that does not add significant computing time or re-
quire significant effort to achieve. There was not a single
breed where the average imputation accuracy declined
from adding imputed sequences into the reference popu-
lation when predicted by minimum Euclidean distance.

There is potential to include easily predicted genotypes
directly into imputation algorithms as an option, where
each animal is imputed in order of minimum Euclidean
distance, and then added to the reference population.
The potential for this method lies primarily in sequence
data where there is a greater number of calling errors
and as yet a much smaller available reference population
[13]. Once the sequenced population becomes larger
there will be little need for this as true sequences are still
much more accurate and representative of the true
haplotype library of the population than imputed calls
[26]. There is some risk that adding animals first who
have low minimum Euclidean distances first will bias the
haplotype frequencies in the reference population and
lower imputation accuracy for less related animals, how-
ever this was not observed in this study.

Ensuring that only high quality sequences or genotypes
are used for GWAS analysis, genomic selection or other
genomic studies is crucial to limit the number of false
positives and provide power to detect causal variants, as
well as to increase the accuracy of genomic predictions.
Rutkoski et al. [27] showed clearly that accuracy of gen-
omic selection is directly affected by accuracy of imput-
ation on a population wide level. It has also been shown
that the power of GWAS studies increases as population
size increases, but generally reaches an asymptote at a
certain population size depending on the density of
SNPs available and the relative risk per allele [28].

Animals are commonly removed from studies before
imputation or GWAS due to a number of factors includ-
ing MAF, call rate, and Hardy-Weinberg Equilibrium
[17, 29, 30]. It follows then, that if imputation accuracy
can be accurately predicted, it is also plausible to remove
animals that are predicted to have imputation accuracy
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below a given threshold. Given the result that minimum
Euclidean distance was a strong metric for imputation
accuracy prediction, we attempted to use all data avail-
able to best predict imputation accuracy.

Figure 2 shows that the optimal model predicts imput-
ation accuracy well, and more importantly there are few
animals that are very poorly predicted. The animals that
have very low imputation accuracy are generally pre-
dicted to perform poorly, which is the most important
feature if this model is to be used as an exclusion criterion.
Figure 2b demonstrates that a reduced model, although
less accurate, will still accurately select the appropriate an-
imals to remove from further analysis based on predicted
imputation accuracy. For sequence analysis, removing
poorly imputed animals could mean removing hundreds
of thousands, or even millions of incorrect calls that could
lead to spurious results, or decrease power to detect true
associations between a causal variant and a trait of eco-
nomic or practical significance [31]. This is especially rele-
vant given the broad range of imputation accuracies seen
in this study, ranging from as low as ~0.79 to ~0.97.

Even in breeds that are generally very well imputed
such as Holstein there are some animals with imputation
accuracies as low as 0.86 (data not shown). Being able to
predict these individuals well is of utmost importance to
subsequent analyses being as powerful and accurate as
possible. It should be noted that the Holstein animal with
the lowest imputation accuracy was predicted poorly in
this study, with a predicted imputation accuracy of 0.91.
However, this was the lowest predicted accuracy for a Hol-
stein individual, and, therefore, in a purebred study, it
would still be the most likely candidate to be removed.

Our findings indicate that genomic relatedness between
an individual and the reference population is the key pre-
dictor of imputation accuracy on an individual basis and a
linear model utilizing this information can be an effective
tool to predict which animals will be poorly imputed. Ref-
erence population size has a large impact on imputation
accuracy, and, consequently, as the reference population
becomes larger, a model that relies on relationships be-
tween reference and imputation populations may have
some diminished value. The reason for that is the smaller
variance in the relationships between individuals in the
population [2]. Although the specific parameters of the
model may change given different reference sizes or breed
compositions, it will likely hold that using genomic
relationships or even haplotype relationships to predict
imputation can be an effective quality control step to limit
the inclusion of poorly imputed sequences or genotypes
into a GWAS or genomic selection applications. Further
investigation could also help to determine the best
methods to add imputed genotypes or sequences to the
reference population to try to impute animals with poor
predicted imputation more accurately.
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Conclusions

Reference populations for imputation to NGS data can be
more effectively chosen for both accuracy and computing
time for certain groups of animals. Including imputed se-
quence genotypes in the reference population is a viable
option to increase accuracy of poorly imputed individuals.
Imputation accuracy can accurately be predicted to deter-
mine which animals will be imputed poorly, as a means of
excluding those animals from subsequent analyses. Fur-
ther studies on clustering crossbred animals for imput-
ation purpose are required.
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