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Abstract

Background: The swimming crab Portunus trituberculatus is one of the most commonly farmed crustaceans in China.
As one of the most widely known and high-value edible crabs, it crab supports large crab fishery and aquaculture in
China. Only large and sexually mature crabs can provide the greatest economic benefits, suggesting the considerable
effect of reproductive system development on fishery. Studies are rarely conducted on the molecular regulatory
mechanism underlying the development of the reproductive system during the mating embrace stage in this
species. In this study, we used high-throughput sequencing to sequence all transcriptomes of the P. trituberculatus
reproductive system.

Results: Transcriptome sequencing of the reproductive system produced 81,688,878 raw reads (38,801,152 and 42,887,726
reads from female and male crabs, respectively). Low-quality (quality <20) reads were trimmed and removed, leaving only
high-quality reads (37,020,664 and 41,021,030 from female and male crabs, respectively). A total of 126,188 (female) and
164,616 (male) transcripts were then generated by de novo transcriptome assembly using Trinity. Functional annotation of
the obtained unigenes revealed that a large number of key genes and some important pathways may participate in cell
proliferation and signal transduction. On the basis of our transcriptome analyses and as confirmed by quantitative real-time
PCR, a number of genes potentially involved in the regulation of gonadal development and reproduction of
P. trituberculatus were identified: ADRA1B, BAPI, ARL3, and TRPAT.

Conclusion: This study is the first to report on the whole reproductive system transcriptome information in stage Il of
P. trituberculatus gonadal development and provides rich resources for further studies to elucidate the molecular basis

of the development of reproductive systems and reproduction in crabs. The current study can be used to further
investigate functional genomics in this species.
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Background

The swimming crab (Portunus trituberculatus) is a com-
mercially important crab species for both aquaculture
and fisheries widely distributed in East Asian countries
[1]. In China, this species spreads widely throughout
marginal seas, including the East China Sea, South
China Sea, Yellow Sea, and Bohai Sea [2]. P. tritubercu-
latus is one of the most important marine species cul-
tured in China because of its high nutritional content
and economic value. This crab has a life cycle of 23 years
and can reach sexual maturity in the first year [3, 4].
Before the puberty molt, P. trituberculatus grows rapidly
by frequent molting (every 5-30 d) [3]. Immediately after
puberty molt and mating, the female P. trituberculatus
usually starts vitellogenesis and ovarian development
[3, 5]. During these stages, the development of the repro-
ductive system is vital to P. trituberculatus because not
only are many larval crabs needed for aquaculture, an in-
dividual with a mature ovary is more widely known to
consumers as well.

The reproductive system is fundamental to reproduct-
ive processes [6]. The reproductive system of the male
crab contains paired testes, vas deferens, seminal vesi-
cles, and a genital aperture, whereas the female crab
consists of paired ovaries, oviducts, gonophores, and an
external sperm reception area [7]. The development of
the male and female reproductive system is crucial to
the reproduction as well as commercial seed production
of P. trituberculatus. The gonads (testes and ovaries) are
the primary reproductive organs, and their development
affects reproduction and sex differentiation [8]. Gonadal
development consists of ovarian and testicular develop-
ment and maturation, such as spermatogenesis, ovarian
differentiation, and vitellogenesis. In male P. tritubercu-
latus, spermatogenesis is mostly characterized by the dif-
ferentiation of sperm cells and their maintenance before
fertilization. In female P. trituberculatus, ovarian devel-
opment is usually divided into 6 stages [5]. In stage I,
the ovary is transparent and ribbonlike, and the main
cells consist of oogonia and previtellogenic oocyte. In
stage II (mating embrace), the ovary is milky white, and
the main cells are composed of endogenous vitelloge
and previtellogenic oocytes. In stage III, the ovary is buff
and orange, and the main cell type is an exogenous
vitellogenic oocyte. In stage IV, the main cell types are
exogenous vitellogenic and nearlymature oocytes in the
ovary, which turn into deep orange. In stage V, the ovary
is ripe, and the main cell type is a mature oocyte. Finally,
in stage VI, the crab has spawned, and the ovary turns
light orange [5, 9, 10].

The ovarian development of P.trituberculatus is initi-
ated by copulation. When female pubertal molting and
subsequent mating occur (stage II), the ovary remains
milky white, and the main cell types are endogenous
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vitellogenic and previtellogenic oocytes [5, 9, 10]. Mean-
while, the special structure of the sperm plug is also for-
matted in the spermatheca during mating. In a mating
embrace (stage II), seminal fluid proteins (including pro-
tease inhibitors, lectins, prohormones, peptides, and
protective proteins such as antioxidants) are transferred
to females with sperm [9, 11]. Thus, to understand the
regulatory mechanisms underlying reproductive develop-
ment in this species during stage II, both whole repro-
ductive systems should be considered together. The
reason is that an increasing number studies show that
male seminal material performs vital functions in female
reproductive fitness, including ovarian development and
sperm plug formation [12, 13]. However, no studies identi-
fying and characterizing stage II in P. trituberculatus have
been conducted at the transcriptome level.

Transcriptome is a collection of transcripts within cells
in certain physiological conditions [14], and transcripts
can be used to examine the expression of genes at the
RNA level. Transcriptome studies have rapidly emerged
in recent years following the advent of next-generation
sequencing technology, which provides high-throughput
and low-cost sequencing that exhibits significant influ-
ence on genetic research. A number of studies have ana-
lyzed the gonad transcriptome and provided information
about the molecular mechanisms underlying gonadal de-
velopment and maturation [15-17]; but few have focused
on the reproductive system. Various sequencing platforms
have also been established, such as Solexa illumine, Roche
454, and ABI solid [18-20]. These technologies have been
applied in studying the transcriptome of many aquatic ani-
mals, particularly in crustaceans [18-20].

In the present study, de novo assembly and high-
throughput Illumina HiSeq sequencing were employed to
obtain the comparative transcriptome of the female and
male reproductive systems of P. trituberculatus during the
mating embrace (stage II). Moreover, differentially
expressed genes (DEGs) were identified and analyzed. The
current study intends to quantify and identify spermato-
genesis and ovarian differentiation related genes and
identify the pathways involved. Findings from this tran-
scriptome dataset can provide valuable resources to
elucidate the molecular mechanisms underlying the
physiological and morphological changes during stage II
of the development of the whole reproductive system.
Thus, the current study can provide valuable genomic in-
formation to understand the development of reproductive
systems and the maturation of P. trituberculatus.

Results

lllumina sequencing and assembly

To obtain an overview of the reproductive system tran-
scriptome of P. trituberculatus and identify the genes
involved in the development and maturation of the
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reproductive systems, two cDNA libraries were prepared
from pooled RNA extracts of female and male repro-
ductive systems in stage II. These extracts were then
sequenced using the Illumina Solexa platform. A total of
42,887,726 and 38,801,152 raw reads were generated
from male and female transcriptome sequencing,
respectively. Ambiguous nucleotides and low-quality
(quality <20) reads were trimmed and removed. The
remaining high-quality reads, totaling to 41,021,030 and
37,020,664 reads from male and female, respectively,
were then obtained. All reads were submitted to the
website of the National Center for Biotechnology Infor-
mation Short Read Archive site, with accession number
SRR5723730 and SRR5723731.

De novo transcriptome assembly with Trinity using
reads from female and male crabs generated 126,188
and 164,616 transcripts, respectively. The average length
of the transcripts in the female and male crabs were
954 bp (ranging from 201 bp to 20,074 bp) and 823 bp
(ranging from 201 bp to 17,641 bp), respectively. The
detailed sequencing and assembly results for the female
and male crabs are shown in Table 1. We used Illumina
sequencing to generate a substantial number of long se-
quences; the lengths of 17.25% (23, 457) of the total
transcripts exceeded 600 bp, and the lengths of 4.13%
(5, 613) of the transcripts exceeded 1, 000 bp (Fig. 1).

Annotation of unique sequences

Annotation of 88,804 unigenes was conducted using
BLASTX [21] searches against the String, KEGG, Pfam,
Swissprot, and non-redundant (NR) databases. The
numbers of matched unigenes in the respective data-
bases were as follows: 4021 (4.53%), String database;

Table 1 Result of the de novo transcriptome assembly performed

with Trinity
Type Unigene Transcripts

Female Total sequence num 70,807 126,188
Total sequence base 50,955,454 120,326,367
Percent GC 45.04 45.79
Largest 20,074 20,074
Smallest 201 201
Average 719.64 953.55
N50 1268 1839

Male Total sequence num 101,401 164,616
Total sequence base 63,867,553 135,502,734
Percent GC 46.30 46.58
Largest 17,641 17,641
Smallest 201 201
Average 629.85 823.14
N50 934 1504
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8432 unigenes (9.50%), KEGG; 10,924 unigenes (12.30%),
Pfam; 11,887 unigenes (13.39%), Swissprot, and 17,558
unigenes (19.77%), NR. The BLASTX top-hit species dis-
tribution of the 1928 annotated unigenes exhibited the
highest homology to Zootermopsis nevadensis (11.34%),
followed by Daphnia pulex (1137, 6.69%), Tribolium
castaneum (657, 3.87%), and Pediculus humanus (439,
2.58%) (Fig. 2).

Functional annotation of the transcriptome

To functionally categorize the assembled unigenes, gene
ontology (GO) assignment programs were used. The
functions of 6046 annotated sequences were predicted.
Blast2 GO was used to assign the GO terms. These uni-
genes were assigned to major GO categories (level 3),
i.e., biological process, cellular component, and molecular
function (Fig. 3). For biological processes, “cellular
process” (54.00%, GO: 0009987) was the most abundant
term. The genes involved in the metabolic process
(51.10%, GO: 0008152), single-organism process (44.81%,
GO: 0044699), organic substance metabolic process
(39.52%, GO: 0071704), primary metabolic process (38.54%,
GO: 0044238), single-organism cellular process (37.24%,
GO: 0044763), and cellular metabolic process (36.20%, GO:
0044237) were also highly represented. For the cellular
component, “cell” (30.67%, GO: 0005623) and “cell part”
(30.67%, GO: 0044464) were the most represented categor-
ies, followed by “intracellular” (26.62%, GO: 0005622),
“intracellular part” (24.47%, GO: 0044424), “membrane”
(21.09%, GO: 0016020), and “organelle” (19.90%, GO:
0043226). For molecular function, “binding” (47.58%, GO:
0005488) was the most prevalent, followed by “catalytic ac-
tivity” (47.06%, GO: 0003824), “organic cyclic compound
binding” (28.59%, GO: 0097159), “heterocyclic compound
binding” (28.55%, GO: 1,901,363), and “ion binding”
(25.69%, GO: 0043167) (Fig. 3). Among all GO terms, the
biological process ontology comprised the largest propor-
tion, followed by the molecular functions ontology and the
cellular component ontology. Within the biological process
ontology, 288 unigenes were identified as developmental
process (GO: 0032502), 57 unigenes were annotated to
reproduction (GO: 0000003), and 47 unigenes were anno-
tated to growth (GO: 0040007).

To further analyze the possible pathways involved in the
development of the P. trituberculatus reproductive system,
all unigenes were mapped to the reference pathways in the
KEGG database. A total of 8, 432 unigenes were mapped to
337 pathways representing biological systems involved in
stage II of the development of the P. trituberculatus repro-
ductive system. The most abundant pathways represented
in the reproductive systems are the metabolic pathway (1,
112 unigenes, ko01100) and the biosynthesis of secondary
metabolites (299 unigenes, ko01110) (Additional file 1:
Table S1 and Fig. 4). Many unigenes were mapped to
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pathways related to cell proliferation and signal transduc-  transport (151 unigenes, ko03013), protein processing in
tion, including purine metabolism (185 unigenes, ko00230),  the endoplasmic reticullum (150 unigenes, ko04141),
the cAMP signaling pathway (171 unigenes, ko04024), the  spliceosome (144 unigenes, ko03040), ribosome (133 uni-
PI3K-Akt signaling pathway (163 unigenes, ko04151), regu-  genes, ko03010), lysosome (132 unigenes, ko04142), and
lation of the actin cytoskeleton (160 unigenes, ko04810),  ubiquitin-mediated proteolysis (131 unigenes, ko04120)
the Rapl signaling pathway (152 unigenes, ko04015), RNA  (Additional file 1: Table S1 and Fig. 4).

Species Distribution
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Fig. 2 Species distribution of BLASTx matches the reproductive system transcriptome unigenes. Each piece of fan indicates the number of top
BLAST matches (the matches with the lowest E-value for each unigene) against the Genbank non-redundant (Nr) protein database for various species
J
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Fig. 3 Gene ontology (GO) assignment of assembled unigenes of P. trituberculatus. GO terms were processed by Blast2Go and categorized at the
2nd level under 3 main categories (biological process, cellular component, and molecular function)
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Analysis of differentially expressed genes between female
and male reproductive systems

To identify and characterize the DEGs between the
female and male in stage II, we found 9, 066 genes to be
significantly  differentially = expressed (FDR < =0.01,
|logFC| > =1) (Additional file 2: Table S2). Among these
DEGs, 2, 723 were upregulated in the female and 6, 343
were downregulated (Additional file 3: Table S3). GO
and KEGG analyses were also performed to understand
the functions of these DEGs. These DEGs were then
assigned to 37 GO terms and 184 pathways through the
KEGG database. DEGs were mostly enriched in molecu-
lar function and biological process, and many DEGs
were related to gametogenesis and signal transduction,
such as genes associated with transport, transporter ac-
tivity, signal transducer activity, ion channel activity, and
so on. Of the functional pathways, neuroactive ligand—
receptor interaction and purine metabolism were most
specifically expressed in P. trituberculatus. In addition,
for specifically expressed genes in reproductive systems,
several pathways were found associated with gonadal
development and sex maintenance, such as homolo-
gous recombination, the Wnt signaling pathway, and
progesterone-mediated oocyte maturation.

To validate the expression profiles obtained from Illu-
mina sequencing analysis, 4 DEGs that play key roles in
regulating gonadal differentiation and development were
chosen for qRT-PCR analysis, using the same RNA sam-
ples. These DEGs include alpha-1B adrenergic receptor
(ADRA1B), BRCA1l-associated protein 1 (BAPI), ADP-
ribosylation factor-like 3 (ARL3), and transient receptor
potential ankyrin 1 (TRPAI). Among these, the differential
expression patterns of 3 genes are consistent with the re-
sults obtained by Illumina sequencing (Fig. 5). The qRT-
PCR results generally agreed with the deep sequencing

Il RNA-SEQ
101 Il gRT-PCR

LOG2RATIO

104

> N N
N Q ol
& & X &

-154
Fig. 5 qRT-PCR validation of differentially expressed genes analyzed
by RNA-seq in female. gRT-PCR was performed for 4 genes that were
identified as differentially expressed between the female and male
reproductive systems. The Y axis shows the relative mRNA expression
levels. * p < 0.05

Page 6 of 10

analysis, which verified the data obtained by Illunima
sequencing,.

In addition, to study the regulatory mechanisms
underlying the reproductive development of P. trituber-
culatus during the mating embrace (stage II), we set the
immature crabs as the control group for expression
analysis. Increased expression levels in the 4 genes
(ADRAIB, BAPI, ARL3, and TRPAI) were detected in
the male mature crabs, relative to those of immature
crabs (Additional file 4: Figure S1). In the female ma-
ture crabs, the expression of the ARL3 gene was sig-
nificantly decreased, whereas the expression levels of
the ADRAIB, BAPI, and TRPAI genes increased
(Additional file 5: Figure S2).

Discussion

Reproductive systems are important in the development
of species and fulfill many pivotal functions, including
gametogenesis, fertilization, and hormone secretion [7].
Numerous studies focused on gonad development and
sexual differentially expressed genes and marker infor-
mation; however, those study subjects were limited to
gonad tissues (i.e., testis and ovary) [15-17]. In the
present study, we performed de novo assembly of the
transcriptome of the whole reproductive systems of fe-
male and male P. trituberculatus. Compared with those
of separate gonad tissues, the transcriptomes of whole
reproductive systems can offer more comprehensive in-
formation for research in gonadal development and
reproduction.

The results of large-scale transcriptome sequencing of
the swimming crab (the whole male and female repro-
ductive systems) could provide resources for gene
expression profiling studies as well as identification of
functional classifications, molecular markers, and mo-
lecular pathways. In general, the high quality of long se-
quences enables us to gain more information about
genes [15]. In the current study, 23,457 transcripts
(17.25%) had sequence lengths exceeding 600 bp, and
5613 transcripts (4.13%) had sequence lengths exceeding
1000 bp. Therefore these datasets can provide a valuable
resource for future studies on specific processes, func-
tions, and pathways in the mating embrace (stage II) of
P. trituberculatus.

The reproductive tissue development of crustaceans is
deemed to be a dynamic process involving coordinated
interactions between regulators that assemble or edit the
cellular constituents supporting the developing gametes
[17]. GO and KEGG analyses were used for gene func-
tion classification and annotation, and for obtaining
background knowledge of gene functions that can help
predict the role of protein interaction networks in cells
[22]. We obtained GO and KEGG assignment results
partially similar to the previous crab transcriptome
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sequencing; however, a large number of key genes and
several important pathways may participate in cell
proliferation and signal transduction (Figs. 3 and 4).
Gametogenesis is a complex process involving cellular
transformations that result in the production of male
and female haploid germ cells, and it starts from the mi-
totic cell cycle followed by entry into meiosis and the
completion of complex differentiation programs [23].
Signal transduction is the process by which a chemical
or physical signal is transmitted through a cell as a series
of molecular events, and this process is also critical for
the timing and maintenance of normal gametogenesis
[24]. In many arthropods, mating initiates a behavioral
and physiological switch in females, triggering responses
in several processes related to fertility [9]. During a mat-
ing embrace (stage II), seminal fluid proteins are trans-
ferred to the female species, inducing numerous
physiological and behavioral post-mating changes in
females [9]. Thus, gametogenesis and signal transduction
could potentially be a primary precondition in stage II of
P. trituberculatus.

ADRA1B, which targets the neuroactive-ligand recep-
tor interaction pathway, is a member of the G protein-
coupled receptor superfamily. This receptor activates
phosphatidylinositol hydrolysis, which may be crucial in
mitogenesis and regulates growth and proliferation in
many cells [25]. Previous studies have shown that
ADRAIB controls male fertility, spermatogenesis, and
the steroidogenic capacity of Leydig cells [26]. ADRAIB
in adult golden hamsters affects the responsiveness of
testicular steroidogenesis to catecholamines [27, 28].
These findings are consistent with our current findings.
In our transcriptome analysis and qRT-PCR, ADRAIB
showed increased expression during stage II and higher
transcripts in the male species than in the female species
(Figs. 5 and Additional file 4: Figure S1), suggesting that
this gene participates in the spermatogenesis and male
fertilization of P. trituberculatus.

ADP-ribosylation factor-like 3 (ARL3), a member of
the ADP-ribosylation factor family of GTP-binding pro-
teins, can bind guanine nucleotides but lacks ADP-
ribosylation factor activity [29]. In previous studies, the
expression and function of ARL3 during spermiogenesis
were examined, and its potential importance in the regu-
lation of male fertility and infertility was determined
[30]. In mouse, ARL3 was found to be expressed from
birth, and the expression increased significantly when
spermiogenesis began [31]. Thus, ARL3 as a novel
manchette-related protein with an important role in the
spermiogenesisand formation of sperm tail collar, was
usually identified as one of the potential proteins in-
volved in the initiation of spermatogenesis [30, 31]. In
our qRT-PCR, ARL3 was significantly increased and
highly expressed in the male crabs during stage II
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(Figs. 5 and Additional file 4: Figure S1), suggesting
that this protein can participate in the spermatogenesis of
P. trituberculatus. Notably, a decrease in the expression of
the ARL3 gene was detected in female mature crabs rela-
tive to the immature crabs (Additional file 5: Figure S2),
suggesting that the ARL3 gene played an important role in
the reproductive system of male P. trituberculatus.

TRPA1 is a membrane-associated cation channelthat is
widely expressed in neuronal cells and involved in noci-
ception and neurogenic inflammation [32]. Normally,
TRPAI is activated and can cause an influx of cation
ions, particularly Ca®*, into the activated cells; this in-
crease in intracellular Ca®>* would trigger an action po-
tential in neuronal cells [33]. TRPAI was unexpectedly
expressed in some non-neuronal cells, such as keratino-
cytes, synoviocytes, and gonads [34, 35]. To illustrate,
TRPA1 is conserved between many invertebrates, except
as a chemosensor for noxious compounds and as a sen-
sor for temperature-driven behaviors [33, 36-38]. Given
that high temperature can simulate growth and initiate
early ovarian development [39], TRPAI may be activated
by temperature fluctuations in the ovary. In the present
study, the expression of TRPA1 was higher in the ovaries
than in the testes (Figs. 5 and Additional file 5: Figure S2),
indicating the involvement of TRPA1 in the ovarian devel-
opment of P. trituberculatus.

BAPI is an important nuclear ubiquitin hydrolase in-
volved in the cell cycle regulation, cell proliferation,
cellular differentiation, repair of DNA damage, and
apoptosis [40]. Ubiquitin C-terminal hydrolase was
found to be involved in sex differentiation in fish [41].
The function of this protein remains undetermined des-
pite numerous studies conducted on ubiquitin hydro-
lases. Some researchers suggest that ubiquitin hydrolases
play an important role in sperm acrosomal function and
antipolyspermy defense during porcine fertilization [41].
The qRT-PCR result indicated that the expression of
BAP1 was increased in the stage II, and the expression
level was significantly higher in the ovary (p < 0.05) than
in the testes (Fig. 5 and Additional file 5: Figure S2). This
preliminary result showed that BAPI may play a crucial
role in oogenesis and ovarian development. However, its
physiological function needs further investigation.

Conclusions

A total of 135,992 transcripts and 88,804 unigenes were
obtained among which were many genes potentially in-
volved in gonadal development, gametogenesis, and
signal transduction. Analysis of DEGs revealed 9066 sig-
nificant genes between the female and male species in
stage II, and 4 DEGs (ADRA1B, BAPI, ARL3, and TRPAI)
were confirmed by qRT-PCR. This study is the first to re-
port on the transcriptome of the reproductive system
during a mating embrace (stage II) in P. trituberculatu.
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This study also provides abundant resources for further
research on the molecular basis of reproduction and de-
velopment in crabs. Future studies would certainly require
evaluating the roles of the pathways involved and the gene
expression profiles associated with those pathways.

Methods

Sample preparation and RNA extraction

A total of 10 pre-pubertal females (distinguished by the
differences in the abdominal shape and the coloration of
the second-to-last segment of the swimming appendage)
[9] and 10 mature male crabs (CW > 100 mm, gonadal
maturity) [42] were obtained in September 2006 (close
to the mating peak) [43] from a local fishing port in
Sheyang in Jiangsu Province. The crabs are transferred
to the laboratory in Jiangsu key laboratory for biore-
sources of saline soils at Yancheng Teachers University
and then pairs of crabs (1 male and 1 female) were ran-
domly grouped and reared in ten 200-1 aquaria at 25 °C
and salinity of 30 for mating observations. When pre-
pubertal females (Molt cycle D3-D4) initiated molting
the pre-copulatory embrace was formatted by position-
ing females underneath males (stage II) [10]. Prior to
copulation, the paired crabs were placed in an ice bath
until anesthetized, and the whole male and female repro-
ductive systems were dissected, frozen in liquid nitrogen
and stored at -80 °C. Total RNA was then extracted
from the whole male and female reproductive system
with TRIzol Reagent (Invitrogen) in accordance with the
instructions of the manufacturer and then treated with
DNase I. Subsequently, cDNA libraries were generated
with the TruseqTM RNA sample prep kit, and index-
coded samples were clustered with cBot Truseq PE
Cluster Kit v3-cBot-HS. Finally, the male and female
libraries were sequenced on Hiseq2000 TruSeq SBS
Kit v3-HS.

Date analysis of de novo sequencing data

To obtain high-quality clean data, raw data were first fil-
tered by removing the reads containing low-quality reads
(< 20) and poly-N reads (> 20% reads) in SeqPrep
(https://github.com/jstjohn/SeqPrep) and Sickle (https://
github.com/najoshi/sickle). De novo transcriptome as-
sembly was accomplished using Trinity (http://trinityr
naseq.sourceforge.net/) [44, 45]. The gene functions of
all assembled unigenes were annotated based on the fol-
lowing databases with NR protein sequences, including
Swissprot (a manually annotated and reviewed protein
sequence database); Protein Information Resource (PIR);
Protein Data Bank (PDB). Unigenes annotatation and
characteristics of homology search of unigenes against
the NR database. Similarly, we obtained GO annota-
tions by Blast2Go (http://www.blast2go.com/b2ghome)
[46, 47]. KEGG pathway annotation and KEGG orthology
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assignments were obtained with the KEGG Automatic
Annotation Server [48].

Analysis of differentially expressed genes

According to the results of all sample and reference gen-
ome alignments, the number of reads per kilo-base of
exon model per Million (RPKM) mapped reads [49] by
RSEM (http://deweylab.biostat.wisc.edu/rsem/) [50] and
EdgeR (http://www.bioconductor.org/packages/2.12/bioc/
html/edgeR.html) [51] were calculated to obtain the differ-
ential expression of genes. By the standard FDR < =0.01,
|logFC| > =1, significant differentially expressed genes
were selected.

Quantitative real-time PCR analysis

We chose 4 genes that were differentially expressed
in the reproductive system for qRT-PCR verification.
In addition, on the basis of the KEGG or GO func-
tion, these particular genes were selected to verify
whether to conform to the transcriptome data. To
compare the gene expression of the immature crabs
with that of the mature crabs, we set the pre-
pubertal crabs as the control group. The gene-
specific primers were designed by Primer Premier 6
(Table 2). PCR reaction was run on the Applied
Biosystem 7500 real-time PCR system, using 2 x
SYBR Green qPCR Mix as recommended by Aidlab
Biotechnologies. The reaction mixtures (25 pL) con-
tained 12.5 pL of 2xSYBR qPCR Mix, 1 pL of
¢DNA, 1 pL of forward and reverse primers, and
10.5 pL of RNase-free H,O. PCR was performed at
95 °C for 3 min, 40 cycles of 95 °C for 15 s, 60 °C
for 15 s, and 72 °C for 25 s. At the end of the reac-
tion, a melting curve was generated. PCR was con-
ducted in 3technological replicates and 2 control
groups by using all target genes and p-actin control
gene [52]. The data for the 2 samples were calcu-
lated as the mean of the relative quality value such
that the Cycle Threshold (CT) mean of each gene
must be less than 30. Finally, relative gene expres-
sion was analyzed using the 22T method [53, 54].

Table 2 Real-time PCR primers used in this study

Gene Forward primer sequence (5-3")  Reverse primer sequence (5-3")
Name

B-actin - ACTGGGACGACATGGAGAAGATC  AAACCTTACCACTCCCGCC
ADRATB  TCTGGTCGCTGTGCGTGAT ATCAAGACCACCAAGACATCCG
ARL3 CATCCCTTGCTCTACATTACTTCC  AAACGACGGGTGCCACAG
BAP1 ACCCGCACTCCTCCCTTAT GAGAACCAAGTGGAGCAGACA
TRPAT AGTAGCGGCAACATGTCCACC CCAAACTAACCCTGAAAGACCG



https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://trinityrnaseq.sourceforge.net
http://trinityrnaseq.sourceforge.net
http://www.blast2go.com/b2ghome
http://deweylab.biostat.wisc.edu/rsem/
http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html
http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html
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