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Abstract

Background: Haplotype data contains more information than genotype data and provides possibilities such as
imputing low frequency variants, inferring points of recombination, detecting recurrent mutations, mapping linkage
disequilibrium (LD), studying selection signatures, estimating IBD probabilities, etc. In addition, haplotype structure is
used to assess genetic diversity and expected accuracy in genomic selection programs. Nevertheless, the quality and
efficiency of phasing has rarely been a subject of thorough study but was assessed mainly as a by-product in
imputation quality studies. Moreover, phasing studies based on data of a poultry population are non-existent. The aim
of this study was to evaluate the phasing quality of FImpute and Beagle, two of the most used phasing software.

Results: We simulated ten replicated samples of a layer population comprising 888 individuals from a real SNP dataset
of 580 k and a pedigree of 12 generations. Chromosomes analyzed were 1, 7 and 20. We measured the percentage of
SNPs that were phased equally between true and phased haplotypes (Eqp), proportion of individuals completely
correctly phased, number of incorrectly phased SNPs or Breakpoints (Bkp) and the length of inverted haplotype
segments. Results were obtained for three different groups of individuals, with no parents or offspring genotyped in
the dataset, with only one parent, and with both parents, respectively. The phasing was performed with Beagle (v3.3
and v4.1) and FImpute v2.2 (with and without pedigree). Eqp values ranged from 88 to 100%, with the best results
from haplotypes phased with Beagle v4.1 and FImpute with pedigree information and at least one parent genotyped.
FImpute haplotypes showed a higher number of Bkp than Beagle. As a consequence, switched haplotype segments
were longer for Beagle than for FImpute.

Conclusion: We concluded that for the dataset applied in this study Beagle v4.1 or FImpute with pedigree
information and at least one parent genotyped in the data set were the best alternatives for obtaining high
quality phased haplotypes.
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Background
Phasing is the process of inferring haplotypes from
genotypes. Haplotype data contain more information
than genotype data, as they make it possible to track sin-
gle alleles or haplotype segments back in the pedigree.
The applications of haplotype information cover many
fields of research in genetics. In livestock, haplotype
structure can be applied to improve the accuracy in

genomic selection programs. Although, the quality and
efficiency of phasing has scarcely been a subject of thor-
ough study [1–6]. Phasing quality has mainly been
assessed as a by-product in imputation quality studies
[7–10]. Furthermore, phasing studies based on data of a
poultry population are non-existent.
Haplotypes can be obtained by phasing genotypes in

silico. Software available at the moment for this purpose
can be roughly divided into two groups: family-based
and population-based phasing strategies [9]. Population-
based algorithms exploit the LD between close SNPs to
model haplotype frequencies while the family-based ones
use linkage between close relatives. At present, FImpute
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[8] and Beagle [11] are two of the most known and
widely used software for haplotype phasing.
FImpute assumes that common haplotypes between

closely related individuals are longer than the ones
shared by more distant individuals. The first step of the
program, given that pedigree information is available, is
to scan all chromosomes in known parent-offspring
pairs. Without pedigree information, parent-offspring
pairs are identified by matching long shared haplotypes.
Later, the program iterates the pedigree up and down in
order to search for more haplotype matches by applying
an overlapping sliding window approach (OSW) along
chromosomes. The OSW changes the size (in each
chromosomal sweep) in order to find smaller haplotypes,
but also to keep phase consistency between haplotypes
and to increase phasing accuracy. The haplotype infor-
mation is collected in a library, which later is used for
identifying haplotypes of high similarity (≥99%), inferring
haplotypes for heterozygous genotypes and calculating
haplotype frequencies. As the accuracy in long windows
is quite high, these segments are used as anchors for
phasing smaller windows. Hence, more phasing errors
can be expected at the beginning and end of long haplo-
type segments [8].
The Beagle approach is based on a hidden Markov

Model (HMM). The methodology is composed of two
steps: (i) build a localized haplotype-cluster model
(LHCM) based on LD between markers and (ii) execute
the phasing program. The phasing execution is an itera-
tive process which in each round (a) fits the LHCM to
estimate haplotype information and (b) samples haplo-
types conditional on the LHCM and genotyped data.
The LHCM is an acyclic graph with a root and a ter-
minal node connected by many intermediate nodes and
edges. Each edge, being the connection between nodes,
is a cluster of haplotypes. For example, the cluster of
haplotypes for a given edge ei may group all haplotypes
whose path travels from the root node to the edge ei.
Moving from one node to the next (one edge) towards
the terminal node will increase the haplotypes size by
one marker. Thus, a graph may have as many edges as
haplotypes markers that are being modelled. Figure 1

adapted from [11] presents an example of such a
graph. Beagle later iterates all the individuals using
phased data as input and in each iteration samples
diplotypes for each individual conditional to the re-
spective individual genotype information. In Fig. 1, for
each marker, allele 1 is represented by a solid line, and
allele 2 by a dashed line. The bold line edges from the
root node to the terminal node represent the haplo-
type 2112. This graph is an example of a HMM used
by the phasing program.
A phasing quality study from Miar et al. (2017) tested

(among others) FImpute v2.2 and Beagle v4.1 in phasing
dairy cattle genotypes from low and high-density arrays.
A high level of phasing accuracy (> 99%) was observed
for both software, recommending FImpute as the faster
option. Hickey et al. (2011) measured phasing quality for
one chromosome of dairy and beef cattle, sheep, pig,
and human populations with the software LRPHLI. In a
comparison of different phasing strategies (computa-
tional and laboratory based) results of phasing quality
were reported [13].The percentage of correctly phased
alleles was above 97% for livestock and 93.7% for the
human chromosome.
A recent study [14], included (among others) Beagle

(v4.0) applied to human data (1 individual) with 1.6 mil-
lion SNPs (on 22 autosome chromosomes) and used two
reference panels: (i) 1000 Genome Project (1000GP)
with 2.5 k individuals and (ii) Haplotype Reference
Consortium (HRC) with 23 k individuals. The results ob-
tained with Beagle presented 1.5% (1000GP as reference
panel) and 0.5% (HRC as reference panel) wrongly
phased alleles, respectively.
The aim of this study is to fill a gap in phasing

quality studies, with three special features: (i) this
study focuses only on phasing quality, (ii) it is based
on real poultry data and (iii) uses simulated data
with known haplotypes. We applied two software,
FImpute v2.2 [8] with (FImpute) and without (FIm-
pute np) pedigree information and Beagle in version
v3.3 (Beagle 3) and v4.1 (Beagle 4) [11], to simulated
genomic data based on a highly-related brown layer
population.

Fig. 1 Example of a directed acyclic graph representing the localized haplotype-cluster model for four markers, adapted from Browning and
Browning (2007)
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Results
Equally phased SNPs
This parameter was calculated for each individual’s haplo-
type within windows of 100, 200 and 400 heterozygous
SNPs. Figure 2 presents median values from all the individ-
uals and the 10 replicates by subsets and chromosomes.
The Eqp percentage values ranged from 88 to 100%.

The exact values are presented in Additional file 1:
Tables S1 to S3. The lowest value observed was for
chromosome 7 (Fig. 2) phased with FImpute without
pedigree information within the 400-window analysis for
the None-P (individuals with no genotyped parents)
subset. The highest value (99.99%) was obtained for
chromosome 1 phased with Beagle v4.1 in the Both-P
(individuals with both parents genotyped) subset.
Regardless of the subset, haplotypes phased with Beagle
v4.1 reached values above 99% in all scenarios.
Across the different chromosomes and/or windows the

impact of genotyped relatives in the data set was as ex-
pected. The phasing quality increased when a given indi-
vidual had one or both parents in the dataset. However,
the improvement was different regarding the software
used. With FImpute, the Eqp values increased when go-
ing from the None-P subset to Both-P. This pattern was
more pronounced when the window size was 400 SNPs.

Further, genotyped close relatives were found to have a
lesser effect when phasing with Beagle than with FImpute.
Regardless of the subset, Eqp values obtained with

FImpute were in general higher when obtained with
pedigree information than those obtained without it.
Moreover, results obtained with FImpute with pedigree
information showed less variation across subsets (Fig. 2).
With genotyped relatives in the dataset (One-P and
Both-P) Eqp values of FImpute with pedigree informa-
tion were very similar ranging from 99.1 to 99.8% while
Eqp values of FImpute without pedigree information
ranged between 91.7 and 99.8% (Additional file 1: Table
S1 to S3). The highest Eqp values with FImpute were
observed with pedigree information and both parents
genotyped, reaching values similar to Beagle v4.1.
Beagle phased haplotypes exhibited different features

than those phased with FImpute. Eqp values reached
with version v3.3 were lower than with version v4.1.
Only when increasing the window size in the analysis
the Eqp values obtained with Beagle v3.3 became lower,
at a similar rate for each subset and regardless the
chromosome size.
In Fig. 3, the number of individuals which were com-

pletely correctly phased is shown. In this parameter the
effect of genotyped relatives in the sample was bigger for

Fig. 2 Equally phased values (%) for the subset None-P, One-P, Both-P and the combined subsets by chromosome (columns) and SNPs windows
(rows) of analysis
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FImpute than for Beagle. Beagle v3.3 showed a signifi-
cant effect of chromosome size. While for chromosome
1 the 100% correctly phased individuals did not reach
25%, this value exceeded 60% in chromosome 20. While
one would expect that it should be easier to phase a
short chromosome entirely correctly compared to a long
chromosome, this pattern is not found both with Beagle
v.4.1 and FImpute with pedigree information when both
parents were observed.

Breakpoints
The median values for Bkp by chromosomes and subsets
for all individuals and replicates are shown in Fig. 4. The
number of breakpoints showed an increasing pattern
when enlarging the SNPs window size. Moreover, the
Bkp values exhibited a “profile” regarding the software
used. While with Beagle (either version) the median
values of Bkp remained below 1 regardless of window
size, chromosome or subset, Bkp values were higher
with FImpute in many scenarios. However, FImpute
showed a different behavior across subsets. When
phased individuals did not have genotyped parents
(None-P) the value of Bkp was higher than when indi-
viduals had genotyped parents (One-P and Both-P).
Regarding the different approaches of phasing with

FImpute, haplotypes phased with pedigree information
showed in general a lower amount of Bkp compared to
haplotypes phased without pedigree information. With
absence of pedigree information results for the None-P

and One-P subsets presented similar and much higher
Bkp values than for the Both-P subset. When pedigree
was available the results for the One-P and Both-P sub-
sets were rather similar with a very low number of Bkp,
while the None-P subset showed higher values.

Switched haplotype segments
These segments were not measured within windows like
the previous quality parameters (Eqp and Bkp) but
chromosome wide. Length was measured from the mid-
dle position between a correctly and incorrectly phased
SNP for both start and end points. In Fig. 5 the loga-
rithm of the distances is presented in density plots for
each chromosome and subset.
FImpute peaks were in general placed on the left,

representing shorter segments, while at the end of the
axis there was always a blue peak corresponding to
Beagle v3.3. This indicates a different profile in the
switched segment size of these two software.
If analyzed within chromosomes and across the differ-

ent subsets only FImpute shows a change of the shape
of the curves. When haplotypes were phased without
pedigree information in chromosome 1 going from
None-P to One-P increased the amount of short
switched segments while the amount of medium sizes
segments was moderately reduced. For this chromosome
in the Both-P subset the amount of short switched seg-
ment became much less and there was an increment in

Fig. 3 Proportion (%) of completely correctly phased individuals for chromosomes 1, 7 and 20 (columns) by subsets
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the medium size ones. This behavior was observed to be
quite similar for the other chromosomes analyzed.
For FImpute with pedigree information, going across

subsets presented a different behavior. When going from
None-P to One-P the number of short segments became
less while at the same time medium size segments slightly
increased. In the Both-P subset the number of short seg-
ments increased to a similar level as in the None-P subset
while the number of medium size segments reached the
lowest level. For the other chromosomes the curves’ shape
showed similar changes across subsets.
Beagle v3.3 results did not change substantially across

subsets but across chromosomes. Haplotypes switched
segments phased with v3.3 showed a decrease when
moving from big size chromosome to shorter ones. With
version v4.1 there was no clear trend neither across sub-
sets nor chromosomes. These haplotypes presented a
quite constant profile in switched segments, being in
general accumulated in medium-long sizes. The values
for different chromosomes by subset and software are
presented in Additional file 1: Table S1-S3. FImpute with
pedigree information, as well as Beagle v3.3, showed a
pattern across chromosomes. When moving to smaller
chromosomes there was a clear trend to a lower number
of switched segments.

Progeny effect
In addition, to understand if progeny had a relevant
effect on phasing quality we grouped the individuals by
the amount of progeny, the results are displayed in

Additional file 1: Table S7. We calculated mean values of
Eqp and Bkp for individuals with 0, 1 or 2, and more
than 2 progenies. FImpute with pedigree and Beagle v4.1
did not show substantial differences of Eqp between
these groups. However, Bkp values of FImpute phased
haplotypes (with and without pedigree information) de-
creased when more progeny was available in the dataset.
Beagle 3.3 also showed a similar decreasing Bkp pattern,
but with absolute values lower than FImpute.

Discussion
Simulated data
For this study the known (true) haplotypes were ob-
tained through a simulation. For this process, real SNP
data was used as the main input and the homozygosity
levels were used as a reference to produce haplotypes
similar to reality. The homozygosity observed in real
data was 72% for chromosome 1 and 7 and 74% for
chromosome 20. The simulated data presented on aver-
age 67% for chromosome 1 and 7 and 68% for chromo-
some 20.
In Fig. 6 the LD decay of real and simulated data, as an

example of the quality achieved, is presented for each
chromosome. The mean LD values decayed while increas-
ing the pairwise distance, though simulated data exhibited
slightly higher values of LD at shorter distance than the
real data. The simulation performed in this study allows
us to evaluate the phasing software with in silico created
haplotypes that are representative of real haplotypes.

Fig. 4 Breakpoint values for the subset None-P, One-P, Both-P and the combined subsets by chromosome (columns) and SNPs windows (rows) of analysis
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Phasing quality
Beagle v4.1 stood out presenting the steadiest and high-
est results for each chromosome, subset or window of
analysis. However, FImpute with pedigree information
and at least one parent genotyped achieved similar
results. Our findings are in agreement with others previ-
ously reported [6, 12–14]. Although the consulted litera-
ture may differ in datasets and evaluated software,
FImpute and Beagle phased haplotypes have consistently
stood out as the best alternatives [6, 12, 14]. Beagle v3.3
was reported as the best option when evaluated with
human data [6] and Wellcome Trust Case Control Con-
sortium 2 data [15] and compared with Impute 2.1 [7]
and Mach 1.0 [16] for accuracy and computing time.
Another study [12] reported FImpute 2.2 to be the best
alternative, compared to Findhap 3 [17], Beagle 4.1 and
ShapeIt2 2.12 [18] with a dairy cattle dataset.
As observed in the current study and by Miar et al.

[12], information from relatives provided a leap forward
in the quality of the haplotypes obtained with FImpute.
An alternative to closely related individuals is to use a
reference panel. This is a more realistic resource in
human genetics, as exploited by Choi et al. [14], but not
in the standard case of livestock research. In this study

we did not have a reference panel, but we studied the
impact of information from relatives by grouping the in-
dividuals in three subsets for the main analyses: None-P,
One-P and Both-P.
The Bkp values, the number of times within a window

a change of phased occurred, were very different be-
tween FImpute and Beagle haplotypes. This reflected the
algorithms behind the software, which followed different
approaches. Across subsets, the highest difference of
Bkp was observed for Chromosome 7, which ranged
from 1 to 10, phased with FImpute without pedigree
with window size 400, where None-P and Both-P Eqp
values obtained were 88.7 and 98.3%, respectively. A
similar behavior was observed by Miar et al. [19] meas-
uring haplotype length accuracy (length of correctly
phased haplotype segments) across datasets with no par-
ents, pairs and trios with trios presenting the highest
values. In the trios scenario it is easier for FImpute to
find long shared haplotypes. These haplotypes are used
as anchors and adjacent (shorter) haplotypes are later
attached when the overlapping sliding window shrinks
enough to find suitable (candidate) haplotypes, filling
blank spaces, though probably with higher error prob-
ability resulting in Bkps. Beagle, following a different

Fig. 5 Switched haplotype segment size for each software by subset (rows) and by chromosome (columns)

Frioni et al. BMC Genetics           (2019) 20:57 Page 6 of 11



concept, creates a cluster of haplotypes which is im-
proved through iterations on a HMM. Each individual’s
haplotype is reconstructed due to genotype information
and haplotype cluster probability.
Our results for Bkp increased with the size of window

of analysis. Thus, we calculated the Bkp relative to the
window size used (Additional file 1: Table S8) and ob-
served no variation across window sizes. While applying
longer windows of analysis we were covering more SNPs
and increased the chance of finding switched SNPs.
The third quality parameter measured was the

switched segment size, which can be seen as the inter-
action of both, the Eqp and Bkp values. FImpute without
pedigree and parents genotyped registered the highest
density of values for short segments. As mentioned
above, short switched segments are created by the soft-
ware, which can be a problem when studying either a
specific region of a chromosome or few loci. Such a situ-
ation can be solved if genotyped parents can be added to
the dataset in addition to a pedigree file. Haplotypes
phased with Beagle v3.3 presented the highest density of
long switched segments, these haplotypes had at the
same time the lowest Eqp values. Beagle v4.1 presented
a lower density of switched segments than v3.3 and did
not exhibit a specific size profile but size segments were
more uniformly distributed compared with the rest of
the software evaluated.

Computing time
The computing time was faster for FImpute than for
Beagle. All runs were performed with default settings,
meaning 10 jobs in parallel for FImpute and 10 itera-
tions for Beagle. For chromosome 1 FImpute with
pedigree information required on average 7 min 27 s,
without pedigree information the time needed was 6 min
and 26 s. With Beagle v3.3 running time was 8 h 24min,
while it was 3 h 26min with Beagle v4.1, both versions
operating with 15Gb of RAM.

Missing values
Having data with missing values is a common situation in
real data sets. Our results based on simulated haplotypes
without missing values may differ from results of real data
where a small proportion of genotypes is typically missing.
Therefore, we created 3 replicates with 3% missing values,
which was the typical level found in the real data after ap-
plying quality filters. The 3% SNPs were deleted randomly
for each individual. This was repeated 5 times with differ-
ent starting seeds to reduce the probability of deleting
important SNPs by chance. Finally, we had 15 files per
chromosome with 3% missing values each.
These files were analyzed exactly the same way as the

as the ones without missing SNPs. The results varied
only slightly from the results reported and can be found
in the, Additional file 1: Table S4 to S6. It is concluded
that missing values have no systematic effect on the
reported pattern of phasing quality.

Conclusions
For the poultry data analyzed, the best options for phas-
ing were Beagle v4.1 and FImpute with pedigree infor-
mation with at least one parent genotyped. The switched
segments observed for the best two options (Beagle v4.1
and FImpute with pedigree information) do not com-
promise the overall quality of the reconstructed haplo-
types. Since for most data sets there will be a certain
proportion of individuals without genotyped parents and
progeny, Beagle v4.1 appears to be the most robust and
recommendable option when phasing quality is of
interest, despite the fact that computing time is longer
compared to FImpute.

Methods
Data and editing
In this study we used the pedigree information of 1′768
individuals of a purebred line of commercial brown layers.
The pedigree contained information from 13 generations.

Fig. 6 LD block density for real and simulated data
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The genomic data comprised information of 918 individ-
uals from the pedigree that were members of generations
7 to 12. The genotyping array used was the Affymetrix
Axiom® Genome-Wide Chicken Array with around 580 k
SNPs [20].
The genomic data was edited with PLINK [21]. Indi-

viduals with a call rate < 90% were discarded. Mono-
morphic SNPs, SNPs not in autosomes and SNPs which
were not in Hardy-Weinberg equilibrium with p < 10− 8

were removed. After editing, 888 genotyped individuals
with 416 k autosomal SNPs remained in the dataset.
For practical reasons we analyzed one large, medium

and small size chromosome, respectively, considered as
being representative of the Gallus gallus genome (35
chromosomes in the reference genome). The selected
ones were 1, 7 and 20 which after editing contained 77′
910 (195.3Mb), 16′059 (36.1 Mb) and 7′004 (14.2Mb)
SNPs, respectively.

Simulation
In order to have true (known) haplotypes available, a
simulation procedure was performed with R software
[22]. Homozygosity levels in the real data were used as
a reference to adjust simulation parameters in order to
have an in silico created population similar to the real
data. The simulation can be summarized in the follow-
ing steps:

1. The 888 individuals that remained after the quality
filters were phased with Beagle v3.3 [11] to obtain a
set of basis haplotypes from real data.

2. With these haplotypes a library was created by
sampling randomly two sets of 1000 haplotypes.

3. Random haplotypes from the library were allowed
to recombine and assigned to the founders of the
pedigree. The number of crossing over events
followed a Poisson distribution with the parameter
λ. In order to adjust the recombination rate to the
size covered by the markers of the chip, λ was
calculated as the ratio between the distance in bp
from first to last SNP of each chromosome and the
physical size reported by Groenen [23] (also in bp),
multiplied by the average length in cM/100.

4. The founders’ haplotypes were dropped along the
real data pedigree, simulating the mating, allowing
recombination (same parameters as step 3), but no
mutation.

5. At this point all the individuals presented known
haplotypes, but for the following analyses we only
used the 888 individuals that would have been
available in real data analyses with quality checked
genotypes. The 888 individuals’ subsets with known
haplotypes were saved as the true haplotypes file.

6. The 888 individuals’ subsets haplotype data were
transformed to genotype format (0, 1 and 2) and
files were saved as the data to be phased with
different software.

This simulation process was repeated ten times result-
ing in ten replicates per chromosome.

Subsets
In order to analyze the effect of genotyped close relatives
in the sample, three subsets were created from the 888
individuals used. The first subset (None-P) comprised
231 individuals whose parents were not genotyped (37
individuals from this group had progeny). The second
subset (One-P) grouped 606 individuals with only one
parent genotyped. The last subset (Both-P) contained 51
individuals whose parents were both genotyped. The im-
pact of progeny was also analyzed by creating three sub-
sets with increasing amount of progeny. The first subset
grouped individuals without progeny, the second subset
individuals which had 1 or 2 progeny and the third sub-
set 2 or more progeny.

Phasing quality analysis
We phased simulated data of 888 individuals for chro-
mosomes 1, 7 and 20 (ten replicates each) with FImpute
v2.2 [8] and Beagle (v3.3 and v4.1) [11]. FImpute was ap-
plied in two formats, with and without pedigree infor-
mation. Analyzing the performance of FImpute without
pedigree was of interest since this software relies on the
shared haplotypes between relatives for phasing. When
the pedigree information is not provided, the algorithm
scans haplotypes to find parent-offspring pairs. Parame-
ters for both software were left with default settings. The
details can be found in the documentation of FImpute
and Beagle (v3.3, v4.1). Both software are freely available
for academic purposes.
After the datasets had been phased, the comparison

with the true haplotypes was done in an R software en-
vironment [22] using the Zoo package [24]. All the indi-
viduals’ simulated true haplotypes were compared with
their respective phased haplotypes created by FImpute
and Beagle. Only the heterozygous SNPs were analyzed,
as only these are informative when comparing phases.
We calculated for each of the three chromosomes

separately (i) the percentage of SNPs which were phased
equally compared to the true haplotype (Eqp), (ii) the
number of breakpoints (Bkp), (iii) the physical distance
between breakpoints (Mb) and (iv) the proportion (%) of
completely correctly phased individuals. The Eqp param-
eter was estimated assuming that the lowest value pos-
sible was 50%. If a given Eqp value, Eqpi was lower than
50% we assumed that the haplotypes being compared
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were complementary. In this case, the real Eqp value
was calculated as 100% minus Eqpi.
A Bkp was defined as the physical place in the haplo-

type where a change of phase was detected compared to
the true haplotype. If a given allele of a haplotype ob-
tained from the phasing software was different from the
true haplotype, we would consider this part of the haplo-
type was wrongly phased. Starting from this physical
position, SNPs up- and downstream in the haplotype
were checked in order to identify if the allele at the
given locus was associated to the beginning or the end
of a switched/inverted segment of the haplotype. For
either beginning or end, the intermediate position
between the wrongly phased allele and the adjacent (up-
or downstream) correct allele was assumed to be the be-
ginning or the end (depending on the situation) of the
inverted segment. The percentage of correctly phased in-
dividuals was calculated as the proportion of individuals
whose average Eqp value was equal to 1, i.e. that had all
the SNPs correctly phased.
Figure 7 shows how the Bkp and the other quality

parameters were obtained with a small example. The
window of analysis (dark blue) moves from left to right,
the vector of matches presents the equally phased (Eqp)
SNPs within the window as “1” or unequally phased as
“0”. Whenever along the matches vector a sequence of
“10” or “01” is observed, this defines a Bkp i.e.: a change
of phase. The Bkp is also the start or end of a switched
segment (in red).
The approach for estimating the quality parameters

was performed one chromosome at a time, the details
were as follows:

i. The first individual’s haplotypes were read and
filtered for heterozygous SNPs.

ii. Individual’s haplotypes (true and phased) were
stored as vectors.

iii. A sliding window docked in each haplotype at the
first allele. The window covered a fixed length,
which was 100, 200 or 400 SNPs.

iv. Within the sliding window, alleles from each
haplotype were compared one by one. The
matching alleles received a score of “1” otherwise a
“0” and these scores were saved in a vector of
matches.

v. From the matches vector the Eqp value was
calculated as the total number of matches divided
by the amount of SNPs scanned (100, 200 or 400)
and stored.

vi. If along the vector of matches (Fig. 1) sequences
like “10” or “01” were observed these would
represent a switch of phase and would be labelled
as a Bkp and the respective SNPs’ positions would
be stored. The sequence “10” was assumed to be
the start of the switched segment while “01” was
the end of it.

vii. The value of Eqp and number of Bkp and SNPs
position of change of phase were stored.

viii.The sliding window moved one SNP towards the
end of the haplotype and steps from iv to vii were
repeated until the haplotype was completely
covered.

ix. Median values of Eqp, Bkp and distance of switched
segments were calculated for the individual under
analysis.

x. The program moved to the next individual and
steps from ii to ix were repeated until all individuals
were analyzed.

When the analysis was finished, we had a pair of
values of Eqp and Bkp for each position of the sliding
window and the positions at which a Bkp was observed
along the haplotype for the whole chromosome. Eqp and
Bkp values were used to estimate median values over

Fig. 7 Graphic example of the methodology for calculating Eqp, Bkp and distance between Bkps
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windows per individual. The distances between switched
segments were defined as the physical distance between
a starting Bkp (10) and a consecutive ending Bkp (01).
The distances were calculated through the Bkp posi-
tions, stored while observing Bkps, and median values
for each individual were obtained. The amount of obser-
vations (of Eqp and Bkp) used to calculate the mean/me-
dian per individual was determined by the window size
(100, 200 or 400) and the number of heterozygous SNPs,
thus may differ between individuals.

Additional file

Additional file 1: Additional file contains Tables S1-S11 with detailed
results for the Figures presented in the main manuscript and in addition
results regarding data sets with missing values. (DOCX 131 kb)
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