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Abstract

Background: Egg production is the most economically-important trait in layers as it directly influences benefits of
the poultry industry. To better understand the genetic architecture of egg production, we measured traits including
age at first egg (AFE), weekly egg number (EN) from onset of laying eggs to 80 weeks which was divided into five
stage (EN1: from onset of laying eggs to 23 weeks, EN2: from 23 to 37 weeks, EN3: from 37 to 50 weeks, EN4: from
50 to 61 weeks, EN5: from 61 to 80 weeks) based on egg production curve and total egg number across the whole
laying period (Total-EN). Then we performed genome-wide association studies (GWAS) in 1078 Rhode Island Red
hens using a linear mixed model.

Results: Estimates of pedigree and SNP-based genetic parameter showed that AFE and EN1 exhibited high
heritability (0.51 ± 0.09, 0.53 ± 0.08), while the h2 for EN in other stages varied from low (0.07 ± 0.04) to
moderate (0.24 ± 0.07) magnitude. Subsequently, seven univariate GWAS for AFE and ENs were carried out
independently, from which a total of 161 candidate SNPs located on GGA1, GGA2, GGA5, GGA6, GGA9 and
GGA24 were identified. Thirteen SNP located on GGA6 were associated with AFE and an interesting gene
PRLHR that may affect AFE through regulating oxytocin secretion in chickens. Sixteen genome-wide significant
SNPs associated with EN3 were in a strong linkage disequilibrium (LD) region spanning from 117.87 Mb to
118.36 Mb on GGA1 and the most significant SNP (rs315777735) accounted for 3.57% of phenotypic variance.
Genes POLA1, PDK3, PRDX4 and APOO identified by annotating sixteen genome-wide significant SNPs can be
considered as candidates associated with EN3. Unfortunately, our study did not find any candidate gene for
the total egg number.

Conclusions: Findings in our study could provide promising genes and SNP markers to improve egg production
performance based on marker-assisted breeding selection, while further functional validation is still needed in other
populations.
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Background
Egg production is the most important trait in layers as it
directly affects economic benefits of poultry farmers [1].
Therefore, improving egg production is one of the main
goals in a chicken breeding program. The egg produc-
tion can be evaluated using different measurements,
such as egg number (EN), hen-housed egg production

(HHP) and egg production rate. Egg number is of great
significance to select hens with higher capacity of egg
laying in modern poultry breeding, especially for the
country where the eggs are sold by quantity, since it can
efficiently evaluate the individual egg production in a
certain period. Different from EN, HHP is a good esti-
mation of group egg production. The age at first egg
(AFE) is also a very important trait for egg production as
it is a partial determination of laying period.
Until now, egg production has acquired considerable

improvement by the conventional selection method.
However, the conventional breeding approaches could
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not completely eliminate the environmental effects
which unavoidably results in inaccuracy of heritability
estimates [2, 3]. Anang et al.(2000) reported the esti-
mates of heritability and genetic correlation of monthly
egg production in a population of White Leghorn [4].
They showed that the estimates of heritability for cumu-
lative records were higher than monthly records, and
phenotypic and genetic correlations among monthly
production were high for contiguous periods. With the
advances in technologies of molecular genetics and avail-
ability of single nucleotide polymorphism (SNP)
markers, many studies had been performed to elucidate
the genetic basis of egg production trait [5–7]. Cur-
rently, over 185 quantitative trait loci (QTL) on 24
different chromosomes (https://www.animalgenome.org/
cgi-bin/QTLdb/GG/index) have been reported to be
associated with age at first egg, egg number and egg pro-
duction rate in chickens [8–14]. Although many QTLs
were identified to exert main effect on egg production
trait, some of them had wide confident intervals for pos-
ition and were rarely replicated [15, 16]. A few useful
QTLs can be utilized to improve breeding programs
based on marker-assisted selection and best linear un-
biased prediction (BLUP) [17]. A new research era began
with subsequent advances in sequencing technologies
and SNP chips, when genome-wide association analysis
has become one of the most efficient methods to detect
genetic variation in livestock. In previous researches, Liu
et al. (2011), Wolc et al. (2012) and Yuan et al. (2015)
reported some candidate genes for egg production, such
as ODZ2, GRB14, GTF2A1 and CLSPN etc. [18–22].
Most of these candidates were detected based on an F2
cross population or cross-sectional in a specific laying
period, while no studies were focused on pure line popu-
lation across the whole laying cycle.
In our research, we employed the commercial 600 K

SNP array to identify the genomic regions and candidate
genes associated with age at first egg and egg numbers
in a pure line population derived from Rhode Island Red
using genome-wide association study (GWAS) that
could potentially accelerate the genetic improvement of
egg production.

Results
Phenotype and genetic parameter statistics
Descriptive statistics of AFE and ENs across the whole
laying period are shown in Table 1. The mean value of
AFE in this population was 137 days, which meant that
hens started laying eggs at about 20 weeks of age. More-
over, EN1 (egg numbers from onset of laying to 23
weeks) and EN5 (egg numbers from 61 to 80 weeks) had
higher phenotypic coefficient of variation (22.67, 25.89%)
than the other traits (2.27% ~ 17.27%). The pedigree-
based heritability was high for AFE and EN1 (0.51 ±

0.09, 0.53 ± 0.08) and relatively low (0.09) to moderate
(0.24) for EN at other stages.
Estimates of SNP-based heritability as well as gen-

etic and phenotypic correlations between AFE and
ENs are displayed in Table 2. The pedigree-based
heritability estimates were larger than those due to
SNP information for all traits except for EN5 and
Total-EN (0.14 vs 0.18, 0.09 vs 0.14). Genetic correl-
ation analyses revealed that ENs in different laying
period were most positively interrelated and ENs at
late laying period (EN3, EN4 and EN5) had high cor-
relation with the Total-EN.

Genome-wide association study
Association tests for AFE and ENs were performed
using a univariate linear mixed model. A total of 161
unique candidate SNPs (P value < 3.17E-05) located
on GGA1, GGA2, GGA5, GGA6, GGA9 and GGA24
were identified (Additional file 1: Table S1). Seven-
teen of them scattering on four different chromo-
somes were suggestively associated with AFE
(Table 3), while the rest containing 16 significant and
139 suggestive SNPs were related to ENs. The Man-
hattan and Q-Q plots for AFE and EN3 GWAS are
presented in Fig. 1, which also show the genomic in-
flation factor (GIF) were 1.04 and 1.05, respectively.
And the results of other traits are in Additional file 2:
Figure. S1. For EN3, sixteen of those candidate SNPs
reached genome-wide significant level (P value <
1.58E-06) and were located within a 0.49 Mb region
that spans from 117.87 Mb to 118.36Mb on GGA1
(Table 4). LD analysis revealed that all genome-wide
significant SNPs located in above 0.49Mb region were
in strong LD status and were clustered into two
blocks (Block 1: 190Kb and Block 2: 91Kb) (Fig. 2).
Unfortunately, there was no genome-wide significant
hits associated with EN at other stages.

Table 1 Descriptive statistics for AFE and egg number in
different stage

Traits N Mean SD CV(%) h2(SE)

AFE 1063 137.37d 5.7 4.15 0.51 (0.09)

EN1 1063 24.15 5.48 22.67 0.53 (0.08)

EN2 1063 95.16 2.16 2.27 0.16 (0.06)

EN3 1063 84.58 6.07 7.17 0.24 (0.07)

EN4 1060 64.71 11.17 17.27 0.23 (0.07)

EN5 1004 105.57 27.33 25.89 0.14 (0.06)

Total-EN 1063 368.13 47.84 13.00 0.09 (0.05)

Abbreviations: AFE: age at first egg; EN1, EN2, EN3, EN4, EN5: total egg
numbers in each of five stages (from onset of laying eggs to 23 weeks, from
23 to 37 weeks, from 37 to 50 weeks, from 50 to 61 weeks and from 61 to 80
weeks); Total-EN: total egg number from onset of laying eggs to 80 weeks; N
number of samples, SD standard deviation, CV coefficient of variance; h2(SE),
pedigree-based heritability (standard error)
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Annotation of candidate SNPs
All the candidate genes associated with AFE were dis-
played in Table 3, including GATA binding protein 3
(GATA3), homeodomain interacting protein kinase 3
(HIPK3), RAB11 family interacting protein 2 (RAB11-
FIP2), Family with sequence similarity 204 member A
(FAM204A), prolactin releasing hormone receptor
(PRLHR) and Neurotrimin (NTM).
The phenotypic variance of EN3 explained by the most

genome-wide significant SNP (rs315777735) were esti-
mated as 3.57% using the GCTA software. To detect
promising EN3-associated genes, detailed information of
sixteen genome-wide significant SNPs were annotated
using the online VEP tool (Table 4). The SNP
(rs315777735) was located within the intron of the DNA
polymerase alpha 1, catalytic subunit (POLA1), while the
other SNPs were near to the candidate genes Pyruvate
dehydrogenase kinase 3 (PDK3), Peroxiredoxin 4
(PRDX4), apolipoprotein O (APOO) and acyl-CoA
thioesterase 9 (ACOT9).

Discussion
Egg production is an important economic trait. So
far, many studies have focused on the genetic deter-
minants of AFE and EN in chicken, and most of
them were based on an F2 crossed population or
cross-section in a specific laying period. In earlier
work, Goraga et al. (2011) and Wolc et al. (2014) re-
ported that some QTLs on chromosomes 4, 5, 7 and
17 had an influence on EN [14, 19]. Yuan et al.

(2015) subsequently carried out a GWAS in an F2
population across the whole laying period (from 21 to
72 week) [20], from which, nine candidate loci on
GGA5 and two promising genes were annotated to be
associated with EN. However, most of above regions
or significant SNPs were population-specific and only
a few candidates were found by multiple populations.
In our study, we performed GWAS for AFE and EN
in different stage of production using a univariate lin-
ear mixed model. This is the first GWAS using the
600 K SNP array in a Rhode Island Red pure line
population across the whole laying period.
The descriptive statistics (Table 1) reveal that EN5 had

the largest phenotypic variation than the other traits due
to the reason that some birds died or were too old to lay
eggs in this stage because of low rate of follicle develop-
ment [23]. Besides, genetic parameter estimates show
that AFE is a high heritable trait, which is approximately
coincided with the previous reports [20, 24]. In addition,
we divided the whole laying period (from onset of laying
eggs to 80 weeks) into five stages according to the egg
production curve and counted the total egg number in
each stage, which was similar to Yuan et al. (2015). Esti-
mate of pedigree-based heritability for EN5 was smaller
than EN at the early laying stages (EN1, EN2, EN3 and
EN4) probably due to the increased environmental or
phenotypic variation in the late laying stage as demon-
strated by Engstrom et al. [25]. Results also show that
the pedigree-based heritability estimates were different
with the SNP-based estimates, which were likely caused
by the difference of addictive variance estimates using
the pedigree or common 600 K SNPs in the animal
model. Moreover, genetic and phenotypic correlations
among ENs were mostly positive, especially between two
neighboring stages. The egg numbers at late laying
stages (EN3, EN4 and EN5) had higher correlation with
the total egg number in the whole laying period than
those at earlier laying stage (EN1 and EN2). These re-
sults were consistent with previous studies in White
Leghorn hens [4, 26].

Table 2 Estimates of SNP based heritabilities (on the diagonal) and of genetic (above the diagonal) and phenotypic correlations
between egg production traits

Traits AFE EN1 EN2 EN3 EN4 EN5 Total-EN

AFE 0.40 (0.05) – 0.14 (0.21) −0.02 (0.15) −0.13 (0.15) − 0.15 (0.15) −0.53 (0.14)

EN1 −0.95 0.39 (0.05) −0.19 (0.21) 0.03 (0.15) 0.12 (0.15) 0.10 (0.15) 0.51 (0.14)

EN2 0.19 −0.19 0.07 (0.04) 0.64 (0.25) 0.35 (0.26) −0.16 (0.29) 0.10 (0.29)

EN3 0.08 −0.08 0.24 0.19 (0.05) 0.81 (0.11) 0.38 (0.17) 0.58 (0.15)

EN4 0.03 −0.04 0.14 0.47 0.18 (0.05) 0.77 (0.11) 0.87 (0.07)

EN5 0.06 −0.06 0.12 0.32 0.53 0.18 (0.05) 0.88 (0.05)

Total-EN −0.15 0.16 0.18 0.51 0.78 0.87 0.14 (0.05)

AFE: age at first egg; EN1, EN2, EN3, EN4, EN5: total egg numbers in each of five stages (from onset of laying eggs to 23 weeks, from 23 to 37 weeks, from 37 to
50 weeks, from 50 to 61 weeks and from 61 to 80 weeks); Total-EN: total egg number from onset of laying eggs to 80 weeks

Table 3 GWAS and annotations of suggestive SNPs (P value <
3.17E-05) for AFE

GGAa Regions N_SNPsb Candidate/Nearst genec

1 4.61 Mb ~ 4.62 Mb 2 GATA3

5 6,928,284 1 HIPK3

6 29.53 Mb ~ 29.73 Mb 13 RAB11FIP2; FAM204A; PRLHR

24 1,994,941 1 NTM
a Chicken chromosome; b the number of SNPs in the regions; cgene name
(Gallus_gallus-5.0 source)
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We carried out seven univariate genome-wide associ-
ation analysis for AFE and ENs independently. Previous
QTL mapping and genome-wide association studies re-
ported some QTLs or SNPs on chromosome 1, 2, 3, 4, 5,
7, 11, 13, 20, 24 and Z were significantly associated with
AFE (https://www.animalgenome.org/cgi-bin/QTLdb/
GG/index) [12, 18, 19, 27]. Our GWAS for AFE did not
detect any genome-wide significant SNPs, while two
chromosomal regions (GGA1: 4.61Mb ~ 4.62Mb;
GGA6: 29.53Mb ~ 29.73Mb) and two SNPs (located on
GGA5 and GGA24) were suggestively associated to AFE.
These candidate QTLs were firstly reported and six
genes around these SNPs were annotated using the VEP
tool, especially the Prolactin releasing hormone receptor
(PRLHR) gene also known as PrRPR in chickens. Previ-
ous studies reported that PrRP and its structurally
related peptide (C-RFa) may play distinct roles in con-
trolling feed intake and pituitary functions in chicks
[28]. In addition, PrRP participates in many important
physiological processes to influence sexual maturity, in-
cluding gonadotropin-releasing hormone, vasopressin

and oxytocin secretion [29–31]. We speculate that the
PRLHR gene has an indirect effect on AFE and further
validation is required in multiple populations.
Univariate tests in egg numbers at different stages de-

tected a total of 155 SNPs located on GGA1, GGA2,
GGA6 and GGA9, only sixteen of which associated with
EN3 were genome-wide significant (P value < 1.58E-06)
and were located in a strong LD region (0.49Mb) on
GGA1 (Table 4). Furthermore, several promising genes
around the significant regions were obtained. POLA1
gene encodes the catalytic subunit of DNA polymerase
alpha 1 and is an essential component of the DNA repli-
cation machinery [32, 33]. Another gene pyruvate
dehydrogenase kinase isoenzyme 3 (PDK3) is one of the
four PDK isoenzymes, which negatively regulates the
activity of pyruvate dehydrogenase complex (PDC) by re-
versible phosphorylation [34]. The PDK3 exhibits tissue-
specific expression in testes, brain, kidney and pancreatic
islets of adult [35, 36]. And the PRDX4 is a 2-cysteine
peroxiredoxin that is a major component of the endo-
plasmic reticulum (ER) oxidative protein folding

Fig. 1 Manhattan and Q-Q plots derived from GWASs for AFE and EN3. Each dot on this figure corresponds to a SNP within the dataset, while
the horizontal red and black lines denote the genome-wide significance (1.58e-6) and suggestive significance thresholds (3.17e-5), respectively.
The Manhattan plot contains -log10 observed P-values for genome-wide SNPs (y-axis) plotted against their corresponding position on each
chromosome (x-axis), while the Q-Q plot contains expected -log10-transformed P-values plotted against observed -log10-transformed P-values.
GIF denotes the genomic inflation factor indicating the degree of population stratification
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pathway [37, 38]. Thus, PRDX4 oxidative activity acts as
a sensor to directly couple neuronal differentiation with
redox environments in the ER [39]. As there are not in-
depth functional researches about above genes in chick-
ens, we speculate that they may regulate egg production

via interacting with neuronal system based on studies in
human. In addition, an interesting gene the apolipopro-
tein O (APOO) around the significant SNPs was also
detected, which was a new member of the apolipopro-
tein family. Previous studies reported that APOO

Table 4 Annotation of genome-wide significant SNPs (P value < 1.58E-06) associated with EN3

SNP GGAa Positionb ALT/REFc MAFd Beta (SE)e P value Consequence Candidate/ Nearest gene

rs14878430 1 117,871,938 C/T 0.407 0.25 (0.05) 7.96E-07 Intron POLA1

rs14878446 1 117,881,774 T/C 0.408 0.25 (0.05) 1.38E-06 Intron POLA1

rs313573834 1 117,885,299 A/G 0.408 0.25 (0.05) 1.38E-06 Intron POLA1

rs13685872 1 117,898,459 A/G 0.417 0.25 (0.05) 1.04E-06 Intron POLA1

rs316686965 1 117,904,908 T/A 0.417 0.25 (0.05) 9.65E-07 Intron POLA1

rs314132663 1 117,907,038 A/G 0.408 0.25 (0.05) 1.38E-06 Intron POLA1

rs314631582 1 117,939,090 C/T 0.406 0.26 (0.05) 7.05E-07 Intron POLA1

rs315777735 1 117,943,070 A/G 0.418 0.27 (0.05) 1.19E-07 Intron POLA1

rs13927842 1 118,028,676 C/A 0.426 0.26 (0.05) 4.70E-07 Intron POLA1

rs317157084 1 118,046,119 C/T 0.426 0.26 (0.05) 4.70E-07 Downstream_43.27Kb PDK3

rs14878614 1 118,062,286 C/A 0.426 0.26 (0.05) 4.70E-07 Downstream_27.35Kb PDK3

rs313935473 1 118,272,993 A/G 0.423 0.24 (0.05) 1.45E-06 Upstream_3.672Kb APOO

rs312874750 1 118,313,008 G/A 0.424 0.25 (0.05) 7.67E-07 Downstream_5.72Kb APOO

rs312668110 1 118,340,009 G/C 0.433 0.25 (0.05) 6.31E-07 Intron ACOT9

rs317511781 1 118,344,902 T/G 0.433 0.25 (0.05) 6.31E-07 Downstream_86bp ACOT9

rs313236049 1 118,364,746 C/T 0.451 0.26 (0.05) 1.51E-07 Upstream_5.44Kb PRDX4
aChicken chromosome; bGallus_gallus-5.0 source; cALT/REF: alternative allele/reference allele; dMinor allele frequency; eEstimated allelic substitution effect per copy
of the effect allele based on an inverse-normal transformed scale under an additive model, expressed in SD unit/allele

Fig. 2 Linkage Disequilibrium (LD) analyses of SNPs in the significant region (0.49 Mb) for egg number in period 3 (EN3). LD plot of significant
SNPs on GGA1 from 117.87 Mb to 118.36 Mb
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participated in fatty acid and lipid metabolism and regu-
lated the production of lipoprotein through hormones in
the chicken [40, 41]. We therefore suggest that the
APOO is a pleiotropic gene, which affects not only the
fatty deposition, but also the egg number at a specific
stage in chickens. However, our study did not find a
gene that affecting the egg number all the time.

Conclusion
In conclusion, the GWAS performed in this study dem-
onstrates that AFE is highly heritable and negatively
correlated with ENs which have relatively low heritabil-
ity. PRLHR gene may affect AFE through regulating
oxytocin secretion in chickens. Moreover, four add-
itional genes (POLA1, PDK3, PRDX4 and APOO) identi-
fied by annotating sixteen genome-wide significant SNPs
can be considered as candidates associated with EN.
Findings in our research could better understand the
genetic basis of egg production, while further functional
validation is still needed in other populations.

Methods
Animals and phenotypes
A total of 1078 Rhode Island Red hens from Beijing
Huadu Yukou Poultry Breeding Co., Ltd. were used in
our study. The egg production and quality of this pure
line has been artificially selected over ten generations.
We only utilized the data from the last generation (G11)
in the study, and the population was produced by cross-
ing 92 sires and 801 dams (One sire mating 8–12 hens).
Blood samples were collected from brachial veins using
the standard procedure of the breeding program, which
was approved by the Animal Welfare Committee of
China Agricultural University.
All birds had pedigree and were housed in individual

cages of the same condition. The age at first egg (AFE)
and weekly egg production from onset of laying eggs to
80 weeks of age for each bird were recorded. We divided
the whole laying period into 5 stages based on the egg
production curve (Additional file 3: Figure. S2) and
counted the egg numbers (EN) in each individual phase:
the period of rapidly ascending egg production (the
rate < 95% from onset of laying eggs to 23 weeks) (EN1);
the period whose laying rate was over 95% was called
peak of laying, which last from 23 to 37 weeks of age
(EN2); while the period whose laying rate is between
90% and 95% including 37 to 50 weeks of age was set as
the third phase (EN3); the fourth period with 80% to
90% laying rate was the decline phase lasting from 50 to
61 weeks (EN4); the laying rate of final phase including
61 to 80 weeks is lower than 80% (EN5). We also calcu-
lated the total egg number from onset of laying eggs to
80 weeks (Total-EN). The values used in the following
analyses were derived from the rank-based inverse

normal transformation of phenotypic records using the
GenABEL package in R software (https://www.r-project.
org/). Because the transformed data has the lower stand-
ard deviation.

Genotyping and quality control
Genomic DNA was extracted from 1.5-mL blood sam-
ples using DNeasy 96 Blood & Tissue Kits (QIAGEN,
Germany). A total of 1078 hens were genotyped with the
Chicken 600 K SNP array [42] (Affymetrix, Inc. Santa
Clara, CA, USA) which contained 580,961 SNPs across
28 autosomes and two sex chromosomes. We first dis-
carded 6593 SNPs with unknown physical position and
repeated genomic coordinates. The Affymetrix Power
Tools v1.19.0 (APT) software was then implemented to
control the quality of sample call rate (> 97%) and dish
quality (> 0.82). After the quality control, 1063 individ-
uals and 517,856 SNPs remained. In addition, the low
quality of SNPs (SNP call rate < 95%, minor allele
frequency < 0.01, Hardy-Weinberg equilibrium P < 1 ×
10–6) were filtered out through the PLINK package [43].
The remaining SNPs with missing genotypes were im-
puted using the Beagle v4.0 procedure [44]. Finally, a
total of 1063 individuals and 294,705 SNPs located on
autosomes (Additional file 4: Table S2) were deemed eli-
gible for the following analyses.

Genome-wide association studies
Prior to the GWAS, a principal component analysis
(PCA) was implemented to evaluate the population
stratification using the PLINK package [43]. We pruned
all SNPs to obtain independent SNPs and blocks via the
option of --indep-pairwise 25 5 0.2 and –blocks-max-kb
500, respectively. A total of 14,878 independent SNPs
and 16,711 linkage disequilibrium blocks were detected.
The relationship matrix was built through the independ-
ent SNPs. And the principal components were calculated
by the eigenvectors of the relationship matrix. Then,
GWAS were carried out independently for AFE and
ENs. Seven univariate association analyses which models
AFE and egg numbers in different stages were per-
formed in GEMMA software [45]. The univariate linear
mixed model was as follows:

y¼Wαþxβþuþε

In this expression, Y denotes the vector of phenotypic
values of AFE and ENs for n samples; W is a matrix of
covariates (including a column of 1 s and fixed effects,
such as batch, top five principal components which con-
tributing to majority of population structure variations
were included in the model to control population struc-
ture); α is the corresponding coefficients of the fixed
effects; x is a vector of SNP genotypes (coded as 0, 1, 2);
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β is the effect sizes of SNPs for the phenotypes; u is a
vector of random polygenic effects with u ~ MVNn(0,
λτ−1K) where λ represents the ratio between the two
variance components and τ−1 denotes the variance of the
residual errors, K is a known kinship relatedness matrix;
ε is a matrix of errors. We applied the Wald statistical
test to evaluate the null hypothesis that the SNP effect
sizes for all phenotypes are zero, H0: β = 0 for each SNP
versus H1: β ≠ 0. For each SNP in turn, GEMMA ac-
quires either the maximum likelihood estimate or re-
stricted maximum likelihood estimate of λ, and outputs
the corresponding P value.
Considering the over-conservation of 5% Bonferroni

correction method, we adjusted the threshold of gen-
ome-wide significant P-values based on the number of
linkage disequilibrium blocks and the independent SNP
markers [46]. Therefore, the threshold P values of sug-
gestive and genome-wide significance were calculated as
3.17E-05 (1.00/31,589) and 1.58E-06 (0.05/31,589),
respectively.
The Manhattan and quantile-quantile (Q-Q) plots for

AFE and EN were performed using the “gap” package in
the R (https://cran.r-project.org/web/packages/gap/).
Genomic inflation factor (GIF) was calculated using the
“GenABEL” package in the R software to judge the ex-
tent of false positive signals [47].

Linkage disequilibrium analysis and gene annotation
We performed linkage disequilibrium (LD) analysis to
further characterize causative regions associated with
AFE and ENs traits by applying the solid spine algo-
rithm in the Haploview v4.2 software [48]. Annotation
of genes adjacent to candidate SNPs were obtained
using the variant effect predictor (VEP) supplied by
Ensembl genome browser 91(http://www.ensembl.org/
Tools/VEP) [49].

Genetic parameter and SNP effect
The pedigree-based hereditability values for AFE and
ENs were estimated using a multi-trait general animal
model method in the DMU v6.0 software [50]. The
model was as follows:

y ¼ 1μþ Zaþ e

where y denotes the vector of the phenotypic values, 1 is
the n × 1 vector of all 1’s,μis population means (fixed ef-
fect), Z is a incidence matrix of random effect (n × 1
vector), and a and e denote the additive effect and ran-
dom residual error, respectively.
Moreover, the SNP-based heritability (h2snp) [51] and

pairwise genetic correlations of AFE and EN were calcu-
lated using a restricted maximum likelihood (REML)
approach implemented in the software GCTA v1.24

[52]. Besides, this procedure was used to estimate the
phenotypic variance contribution of significant SNPs
based on a genetic matrix constructed from all eligible
SNPs. The models of SNP-based heritability and the
phenotypic variance contribution were the same as our
previously described by Yi et al. (2015) [53].
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