Skip to main content

Table 1 Genetic models from PAP segregation analysis for adjusted traits.

From: The role of parametric linkage methods in complex trait analyses using microsatellites

Adjusted trait Model m(AA)a m(Aa) m(aa) SD f(a)b -2lnLIKE χ2d p-valued
ecb21 Dom -0.44 [-0.44]c 10.53 3.56 0.231 2625.5 37.5 0.000000
ecb21 CoDom -0.12 14.31 16.73 3.95 0.008 2663.0   
ntth1 Dom -0.02 [-0.02] 1.12 0.37 0.143 815.9 21.2 0.000004
ntth1 CoDom -0.01 1.03 3.50 0.38 0.008 837.1   
ntth2 Dom -0.05 [-0.05] 1.35 0.49 0.202 N/Ae   
ntth3 Dom -0.03 [-0.03] 1.38 0.52 0.167 1429.5 13.54 0.000234
ntth3 CoDom 0.00 1.59 2.21 0.56 0.001 1443.1   
ntth4 Dom -0.01 [-0.01] 1.66 0.55 0.094 N/A   
ttdt1 Dom -0.06 [-0.06] 1.85 0.61 0.206 N/A   
ttdt2 Dom -0.03 [-0.03] 2.25 0.74 0.134 1997.5 12.96 0.003180
ttdt2 CoDom -0.01 2.91 3.50 0.77 0.004 2010.4   
ttdt3 Dom -0.05 [-0.05] 2.25 0.86 0.162 N/A   
ttdt4 Dom -0.01 [2.73] 2.73 1.02 0.003 N/A   
ttth1 Dom -0.05 [-0.05] 1.14 0.48 0.218 N/A   
ttth2 Dom 0.00 [2.12] 2.12 0.76 0.002 N/A   
ttth3 Dom -0.03 [-0.03] 1.67 0.74 0.132 N/A   
ttth4 Dom -0.02 [-0.02] 1.99 0.65 0.106 N/A   
  1. am(AA) = trait mean value of genotype AA
  2. bf(a) = frequency of allele a
  3. c[ ] = parameter fixed to equal homozygote value
  4. dThe chi-square and p-values are for the co-dominant (CoDom) vs. dominant (Dom) model comparisons, when the co-dominant model could be fit
  5. eN/A = -2lnLIKE not presented because no comparison was possible